
An extension of the LQG-LTR procedure

L. Ravanbod�y D. Noll �y P. Apkarian�z

Abstract

The LQG-LTR procedure is a classical method to desensibilize a system in closed loop

with respect to disturbances and system uncertainty. Here an extension is discussed which

avoids the usual loss of performance in LTR, and which is also applicable for non-minimum

phase systems. It is also shown how the idea can be extended to other control structures.

In particular, it is shown how PID controllers can be desensibilized with this new approach.

The method is tested on several examples, including in particular the lateral ight control of

an F-16 aircraft.

Keywords: LQG-LTR, observer-based control, PID control, mixed H2=H1 synthesis,

structured controllers.

1 Introduction

It became apparent during the late 1960s that LQG controllers often lack robustness with regard
to system uncertainty. In 1966 Kwakernaak [1] proposed loop transfer recovery (LTR) as a means
to overcome this de�cit in practical situations. LTR was later re-discovered and popularized in a
series of papers by Stein and Athans [2], Doyle and Stein [3,4]. Even today LQG-LTR is still used
by practitioners to desensibilize LQG controllers to enhance the robustness of a design.

Unfortunately, LTR has three main limitations. Firstly, the price for the enhanced robustness
may be a considerable loss of performance. Secondly, LTR is limited to controllers with observer
structure. And thirdly, its application to non-minimum phase systems is not obvious. Here we
propose a new method, which avoids these di�culties. Our new approach can be cast as a constraint
optimization program o�ering a trade-o� between performance and robustness

minimize P(K)
subject to R(K) � r

K structured controller
(1)

where P(K) is the performance of the closed-loop system, expressed by an H2 norm, while R(K)
is the robustness, represented by a possibly frequency weighted H1 norm of the input or output
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sensitivity function k(I +KG)�1k
1
or k(I +GK)�1k

1
. The crucial point is to choose the degree

of robustness r in the constraint in such a way that a satisfactory compromise is achieved. As we
shall show, for minimum phase systems and observer-based controllers, the LQG-LTR procedure
allows to calibrate r in (1) in a natural way. The mixed H2=H1-controller obtained by solving (1)
is then as robust as the corresponding LQG-LTR controller, but has better performance.

In the case of non-minimum phase systems program (1) remains fully in e�ect. What needs to
be modi�ed is the LQG-LTR procedure, at least if one still wishes to use it to calibrate r. This can
be done e.g. by working with frequency weighted sensitivity functions. For more details see [5] and
special issue on loop transfer recovery of the International Journal of Robust and Nonlinear control,
especially [6]. In [2] it is also shown that a similar trade-o� between sensitivity and complementary
sensitivity can be cast as an optimization problem over the Hardy space of stable transfer functions
with 2-norm, i.e. an H2- optimization problem, which under some restrictions can be solved by
LQG-LTR.

For more general controller structures program (1) can be used in much the same way, but one
needs a new way to calibrate the robustness parameter r in the constraint. We present a general
method which provides a range [r�; r

�] in which the parameter r should be chosen. The validity of
our method is tested for the PID controller structure.

The structure of the paper is as follows. In Sections 2 and 3 the essential features of LQG-LTR
are recalled, presented for the case of the input loop breaking point. The improved LTR procedure
for this case is presented in Section 4. Section 5 briey discusses LTR at the output loop breaking
point. Section 6 gives a dual mathematical programming approach, where the roles between
performance and robustness in the trade-o� are changed. More general controller structures are
discussed in Section 7, and a new procedure to calibrate r is introduced. Experiments are presented
in Section 8.

2 Preparation

Let us briey recall the set-up for H2-synthesis. Given an open-loop plant in state-space form

P :

24 _x
z2
y

35 =

24 A B2 B
C2 0 D2u

C Dy2 0

3524 x
w2

u

35 ;(2)

the goal of H2 synthesis is to �nd a dynamic output feedback controller in state space form

K :

�
_xK
u

�
=

�
AK BK

CK DK

� �
xK
y

�
(3)

which stabilizes P in closed loop and minimizes the H2 norm (cf. [7])

min
K
kTw2!z2(P;K)k2(4)

of the closed-loop performance channel w2 ! z2. We call P(K) = kTw2!z2(P;K)k2 the per-
formance of the closed-loop system. It is well known that the optimal solution K� of (4) has
observer-based structure

K� =

�
A�B2Kc �KfC2 Kf

�Kc 0

�
;(5)
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and that Kf , Kc can be computed via AREs or LMIs [8]. In order to assure the existence of K�

we use standard assumption like (i) { (iv) on page 384 of [8], or (A1) { (A5) on page 387 of [9],
which include stabilizability and detectability of the plant (2).

It is convenient to consider LQG control as a special case ofH2 synthesis. Following [9], consider
the LQG problem

GLQG :

(
_x = Ax+Bu+ �w

y = Cx+ v

where w and v are white noise with covariance matrices W and V , respectively. Let Q = Q> � 0
and R = R> � 0 and build a plant of form (2) by setting

PLQG =

24 A B2 B
C2 0 D2u

C Dy2 0

35 =

2664
A

�
�W�>

�1=2
0 B

Q1=2 0 0 0
0 0 0 R1=2

C 0 V 1=2 0

3775 :(6)

If the original inputs v; w and outputs x; u of LQG are encoded as w2 and z2 and recovered from
the relations �

w
v

�
=

�
W 1=2 0
0 V 1=2

�
w2; z2 =

�
Q1=2 0
0 R1=2

� �
x
u

�
;

then LQG becomes a special case of H2-synthesis in the sense that

J = E

�
lim
T!1

1

T

Z T

0

�
x(t)>Qx(t) + u(t)>Ru(t)

�
dt

�
= kFl(PLQG; K

�)k22

for the LQG controller K�. This con�rms that the optimal LQG controller K� has the ob-
server structure (5). The plant PLQG satis�es the standard assumptions for controller synthesis if

(A;
�
�W�>

�1=2
; C) and (A;B;Q1=2) are assumed stabilizable and detectable [9, 10].

3 Loop transfer recovery

This section continues with a rapid ashback on the LQG-LTR procedure [10, 11]. Using the
embedding PLQG ! P , the situation is interpreted in the context of H2 optimal control.

Along with its excellent performance p� = P(K�) = kTw2!z2(P;K
�)k2, the optimal LQG

controller K� may be highly sensitive and therefore lack robustness with respect to system uncer-
tainty. This is where the LQG-LTR procedure sets in. In its input-sensitivity form it provides a
one-parameter family of observer-based controllers

K(�) =

�
A�B2Kc �Kf (�)C2 Kf (�)

�Kc 0

�
;

indexed by 0 < � � 1, such that

(i) K(�) is the LQG controller of the modi�ed LQG plant

PLQG(�) =

2664
A

�
�W�>

�1=2
0 B

Q1=2 0 0 0
0 0 0 R1=2

C 0 �1=2V 1=2 0

3775 ;(7)
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the nominal case (6) being � = 1. In particular, K� = K(1). Explicitly

K(�) = �Kc (sI � (A�BKc �Kf (�)C))
�1Kf (�):(8)

(ii) As � ! 0, the LTR controller K(�) gets less and less sensitive in so far as the H1 norm of
the LQG sensitivity function S(G;K(�)) = (I +K(�)G)�1 approaches the H1 norm of the
so-called target sensitivity function SLQ = (I+KcGLQ)

�1, which has provable good gain and
phase margins [12]. Here

G(s) = C(sI � A)�1B; SLQ =
�
I +Kc(sI � A)�1B

��1
= (I +KcGLQ)

�1:

(iii) �1=2Kf (�) ! V �1=2 as � ! 0, so K(�) has no limit in controller space as � ! 0. In conse-
quence, performance ofK(�) degrades in the sense that P(K(�)) = kTw2!z2(P;K(�))k2 !1
as �! 0, where P is the nominal plant (6).

Altogether the family of LTR controllers K(�) in (8) represents a trade-o� between performance
(4) with respect to the original LQG plant (6), and robustness with respect to the input sensitivity
function S(G;K) = (I +KG)�1. Each K(�) is conveniently obtained by solving a modi�ed LQG
synthesis program based on (7). The procedure leaves Kc �xed and adapts the Kalman �lter gain
Kf (�) to the noise level �V .

Remark 1. A variant of the described LTR procedure is obtained by �xing V = V0 and letting
W = W0 + ��1BBT , where W0 is nominal.

The quest addressed in this paper is now how to improve robustness kS(G;K)k1 ! kSLQk1 =:
r� just as in LTR, but at the same time avoid the loss of performance P(K(�)) ! 1 caused by
the LTR controller.

4 Improved LQG-LTR procedure

In order to emphasize the terms performance and robustness, we continue to use the notations

P(K) = kTw2!z2(P;K)k2; R(K) = kS(G;K)k1:

As was observed before, R(K(�))! r� := kSLQk1, while P(K(�))!1 when �! 0. Notice that
r� is the best robustness we can possibly achieve, so it serves as a lower bound for the parameter
r in (1).

Let r� := kS(G;K�)k1 = R(K�) be the robustness of the nominal H2 (respectively LQG)
controller K�. As K� is too sensitive with regard to S(G;K), the value r� is too large. So r� is
an upper bound for r. Now every intermediate value r with r� < r � r� = R(K�), can be realized
as r = r(�) = R(K(�)) for some � 2 (0; 1]. In other words, for every r 2 (r�; r

�] we can �nd an
LQG-LTR controller K(�) which has precisely the robustness r.

Naturally, one aims at a compromise r = r(�) somewhere in between the two extrema r�; r
�.

This is now where LQG-LTR has its limitations. Namely, it can only propose to stop at some K(�)
where r = r(�) is as desired. But it can then no longer inuence the corresponding performance
p(�) = P(K(�)). The value p(�) := P(K(�)) is just somewhere in between the lower bound
p� = P(K�) and the upper bound p� =1, and has to be accepted as such. The present work claims
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that one can do better. Having identi�ed the appropriate robustness level r = r(�) = R(K(�)) of
the LTR controller K(�), the following structured mixed H2=H1 optimization program, a special
instance of (1), is proposed.

(P�)
minimize P(K) = kTw2!z2(P;K)k2
subject to R(K) = kS(G;K)k1 � r(�)

K has observer structure (5)
(9)

Its decision variable is x = (vec(Kc); vec(Kf )). For the following, the solution of (9) is denoted
as K2;1(�), indicating that a mixed H2=H1 synthesis problem is solved. The robustness level
r(�) = R(K(�)) imposed in the constraint is taken to be the robustness level of the LQG-LTR
controller (8) with parameter �. Program (9) is the key element of the following

1: Initialize. Synthesize nominal LQG controller K� and compute its robustness r� = R(K�) =
kS(G;K�)k1. If r

� is small enough, meaning that K� is su�ciently robust, then quit. Other-
wise continue.

2: Calibrate. Compute LTR controller K(�) so that robustness r(�) := kS(G;K(�))k1 < r� is
small enough. A lower bound is r� = kS(GLQ; Kc)k1.

3: Optimize. For the current value �, solve mixed H2=H1 program (Pr(�)), using K(�) as initial
guess. The locally optimal solution is K2;1(�).

4: Evaluate. If K2;1(�) is not su�ciently robust, use smaller � to get a smaller r(�). If K2;1(�)
is too robust and not su�ciently performing, use larger � to get a larger r(�). Then go back
to step 3.

Remark 2. Notice that in (9) the Kalman gain Kf and the state feedback gain Kc are optimized
simultaneously. The principle of separation of observation and control is no longer valid. In
particular, the optimal Kc, Kf are no longer characterized by AREs. Nonetheless K2;1(�) is an
observer-based controller. Notice that without the structural constraint (5) the H2=H1 program
(9) has an in�nite dimensional solution [13], which need not even be realizable. And even when
realizability is imposed as the sole structural constraint, the optimal solution need not be observer-
based.

Remark 3. The fact that the r(�) cover the range (r�; r
�] does not mean that r(�) 2 (r�; r

�] for
all �. Typically, for � close to the nominal value 1 it may happen that r(�) > r�. This means LTR
is not a monotone procedure, as can be seen from the graph of 100r(�) in Figure 2. Naturally,
the � with r(�) > r� are of no use in algorithm 1. Similarly, for a given r only the largest � with
r = r(�) is of interest.

The central property of the solution K2;1(�) of (9) is the following

Proposition 1. The optimal H2=H1 controller K2;1(�) computed in step 3 of algorithm 1 is as
robust as the LTR controller K(�) in the sense that kS(G;K2;1(�))k1 = kS(G;K(�))k1, but it
has better performance P(K2;1(�)) � P(K(�)).

Proof: The �rst part of the statement claims that the constraint R(K) � r(�) in (9) is active
at the locally optimal solution K2;1(�). Suppose this is not the case, i.e., P(K2;1(�)) < r(�).
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Then K2;1(�) is also a local minimum of the unconstrained H2 program (4). But program (4)
is strictly convex and its unique global minimum is the LQG controller K�. In particular, there
are no other local minima, hence K� = K2;1(�). This implies r� = P(K�) < P(K(�)) = r(�).
However, according to step 2 of algorithm 1, � is such that r� < r(�) � r� and values � with
r(�) > r� are not considered. This shows that the constraint is active.

The second claim, the improvement of the performance, is due to the fact that K(�) is a feasi-
ble point in (9), and that optimization is started at K(�). This assures that the (locally) optimal
solution K2;1(�) has a lower objective value P(K2;1(�)) � P(K(�)). �

Remark 4. Mixed H2=H1-programs had originally been proposed by Haddad and Bernstein [14],
who characterize the solution in the full-order case (in the absence of constraint (5)) by a system
of coupled algebraic Riccati equations. A homotopy method is proposed to compute the solutions.
The �rst numerically e�cient way to solve (9) with the constraint (5) was presented in [15] and is
based on nonsmooth optimization techniques. Tables 8.3 and 8.4 of [15] give a comparison between
the method of Haddad and Bernstein and ours in cases where both are applicable. Notice that
program (9) is no longer convex due to the structural constraint on K.

5 Other LTR procedures

There exists a dual LTR procedure, which generates a familyK(q) of LQG controllers parametrized
by q � 0 such that K(0) = K�, and such that K(q) now gets less sensitive as q !1 [3]. Consider
the deformed LQG system

P (q) :

2664
A

�
�W�>

�1=2
0 B

Q1=2(q) 0 0 0
0 0 0 R1=2

C 0 V 1=2 0

3775 ;
where Q(q) = Q+qC>C, and q = 0 corresponds to the nominal case (6). The LQG-LTR controller
is then obtained by an LQG synthesis for P (q) and has the form

K(q) =

�
A�B2Kc(q)�KfC2 Kf

�Kc(q) 0

�
(10)

where now Kf is �xed and Kc(q) tuned. Limiting results now hold with respect to the output

sensitivity function eS(G;K) = (I + GK)�1. Namely keS(G;K(q))k1 ! keSLQk1, where eSLQ =

(I + C(sI � A)�1Kf )
�1

= (I +GLQKf )
�1, which again has guaranteed margins as q !1.

Remark 5. Notice that K(q) is obtained by arti�cially increasing the cost term x>Qx in the LQG
objective, replacing the nominal Q by Q + q C>C. As q !1 increases, this obviously forces the
trajectories x(t) to decay faster to 0 as t ! 1, hence a gain in robustness. In [2] a variant is
discussed, where in the cost term x>Qx+ �u>Ru the parameter � is driven to zero.

The new type of controller K2;1(q) associated with the family K(q) is constructed as follows.

Fix q > 0 and compute er(q) = keS(G;K(q))k1. Then solve the mixed H2=H1 program

minimize P(K) = kTw2!z2(P;K)k2
subject to R(K) = keS(G;K)k1 � er(q)

K observer-based

(11)
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the solution beingK2;1(q). The link between the dual LQG-LTR controllerK(q) and its associated
H2=H1 controller K2;1(q) is the following

Proposition 2. The mixed H2=H1 controller K2;1(q) is as robust as the LQG-LTR controller

K(q) in the sense that keS(G;K2;1(q))k1 = keS(G;K(q))k1, but it has better performance. �

Remark 6. It is straightforward to propose an algorithm similar to algorithm 1 based on (11).
The details are left to the reader.

6 Trade-o� with performance certi�cate

There is a second approach to (9), which can be interpreted as setting aside some of the good
performance in order to buy some robustness. Suppose the unconstrained H2 program has p� =
P(K�), where K� solves (4). We refer to p� as the nominal performance. As soon as K� is overly
sensitive and lacks robustness, p� is too small. Assuming that we are working with the sensitivity
function R(K) = kS(G;K)k1, let us consider the following mixed H1=H2 program

(D�)
minimize R(K) = kS(G;K)k1
subject to P(K) = kTw2!z2(P;K)k2 � (1 + �)p�

K has observer structure (5)
(12)

Here we accept a loss of 100�% in nominal performance p�, and use this freedom to buy as much
robustness as possible.

It turns out that there is a close relationship between programs (P�) and (D�).

Proposition 3. Let K2;1(�) be a Karush-Kuhn-Tucker (KKT) solution of (P�), where r(�) is
such that the LQG controller is not feasible for (P�). Then there exists � = �(�) such that
K2;1(�) = K1;2(�(�)), i.e., K2;1(�) is also a KKT solution of a suitable program (D�(�)). One
simply has to set �(�) := [P(K2;1(�))� p�]=p�.

Conversely, let K1;2(�) be a KKT solution of (D�), which is not a critical point of R alone
and is more robust than the LQG controller. Then K1;2(�) = K2;1(�(�)) for a suitable � = �(�),
i.e., K1;2(�) is also a KKT of (P�(�)). One has r(�(�)) = R(K1;2(�)).

Proof: 1) Let K := K2;1(�) be a KKT-point of (P�), respectively, of (9). Then there exists a
Lagrange multiplier � � 0 and a Clarke subgradient � 2 @R(K) such that (see [16, Ch. 6])

(KKT )� 0 = rP(K) + ��; � (R(K)� r(�)) = 0; R(K) � r(�):

We argue that � > 0. Suppose we had � = 0. Then rP(K) = 0. By convexity of the LQG
program K is then the unique minimum of P , which means it is the LQG controller K�. On the
other hand, R(K) � r(�) by (KKT�) which means the LQG controller K� is feasible in (P�).
Since this was excluded by hypothesis, we have a contradiction, proving � > 0.

Let us now compare this with the KKT-condition for program (D�), that is, for (12). Notice

that eK := K1;2(�) is a KKT-point of (D�) if there exists a subgradient � 2 @R( eK) and a Lagrange
multiplier � � 0 such that

(KKT )� 0 = � + �rP( eK); �(P( eK)� (1 + �)p�) = 0; P( eK) � (1 + �)p�:
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All we have to do now is tune � and � such that K also satis�es (KKT�). We simply let � = 1=�,
then the �rst equation of both conditions is the same. For the constraint, all we have to do is
choose � such that P(K) = (1 + �)p�. This is possible, because as we have seen, K is not the
LQG controller, hence it satis�es P(K) > p�. Therefore �(�) = P(K)=p� � 1 as claimed.

2) Conversely, let eK := K1;2(�) be a KKT-point of (D�). Then condition (KKT�) is satis�ed.

We argue that � > 0. Indeed, � = 0 gives 0 = � 2 @R( eK), which means that eK is a critical point
of R. Since this was excluded by hypothesis, we must have � > 0.

Now we have to �x � and � in such a way that eK satis�es (KKT )�. We simply put � = 1=�,

then the �rst equations is satis�ed. For the constraint, let us put er := R( eK). Then er < r� = r(1),

as by hypothesis eK is more robust than the LQG controller. Since er > r�, and since the curve r(�)

�lls the interval (r�; r
�], there exists � such that er = r(�), henceR( eK) = r(�). This � is our �(�). �

Remark 7. While programs (P�) and (D�) are at least locally in one-to-one correspondence via
� 7! �(�) and � 7! �(�), it is bene�cial to have both at our disposition. For instance, in some
cases it may be easier to calibrate the value �, i.e. the accepted loss of performance, than to
guess an appropriate � in (P�). On the other hand, LTR can be used more directly to calibrate
the procedure in the primal approach based on (P�). Notice, however, a di�erence between (D�)
and (P�). In (D�) it may happen that the constraint P � (1 + �)p� is inactive. In that case a
local minimum of the robustness function R alone is found. This is possible, because the H1-
program minfkS(G;K)k1 : K observer-basedg is not a convex program and may therefore have
local minima.

Remark 8. The LQG-LTR procedure encounters di�culties for non-minimum phase systems G.
The target sensitivity function SLQ can no longer be approached at all frequencies, and a weaker
result of the form S(G;K(�)) ! SLQ(I + E) for some frequency dependent error term E holds
instead [5]. In this situation it may be advantageous to work with weighted sensitivity functions

W1SW2 or W1
eSW2 in order to preserve some of the properties of LTR in the minimum phase case,

as proposed in [2]. In contrast, program (9), respectively it dual (12), do not really depend on G
being minimum phase. For instance, in (12) we have still interest to minimize sensitivity as much
as we can, non-minimum phase being just a warning that we might be less successful. In general
we may decide to follow Athans [17] and use LTR despite the limitations of non-minimum phase,
or we could use a robustness constraint of the form R(K) = kW1S(K)W2k1 � r, respectively

R(K) = kW1
eS(K)W2k1 � r, using a frequency weighted sensitivity function within a modi�ed

LTR procedure to calibrate r(�). A third possibility is to use the method proposed in the next
section to calibrate the robustness parameter r di�erently.

7 Extension to more general controller structures

In this section we propose an extension of algorithm 1 to general controller structures. In Section
8.1.2 this will be applied to controllers with PID structure.

A controller in state-space form (3) is called structured if the matrices AK , BK , CK , DK depend
smoothly on a design parameter vector x, that is

AK = AK(x); BK = BK(x); CK = CK(x); DK = DK(x):
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It is assumed that x varies in some parameter space Rn, or in a constrained subset of Rn. Here n =
dim(x) is typically smaller than dim(K) = n2K +m2nK + p2nK +m2p2, where m2 is the number
of inputs, p2 the number of outputs, nK the order of K. It is also expected that nK � nx. Full
order controllers are en abus de langue referred to as unstructured.

A �rst controller structure was already encountered, namely, observer-based controllers, where
x = (vec(Kc); vec(Kf )) 2 R

nxm2+nxp2 . Other useful controller structures are for instance reduced-
order controllers (nK � nx), decentralized, or PID controllers. For PIDs the structure is:

Kpid(x) =

24 0 0 Ri

0 ��Im2
Rd

Im2
Im2

DK

35 ;(13)

where x = (�; vec(Ri); vec(Rd); vec(DK)) has dim(x) = 3m2p2 + 1, and a constraint � � � (for
some � > 0) is typically added in parameter space.

Armed with this, the following algorithm is proposed

1: Nominal synthesis. Compute structured optimalH2 controllerK(x�) by solving the nominal
structured H2 problem

minimize P(x) = kTw2!z2(P;K(x))k2
subject to K(x) internally stabilizing

(14)

Evaluate its sensitivity r� = R(K(x�)) = kS(G;K(x�))k1. If r� is small enough, meaning
that K(x�) is su�ciently robust, then quit. Otherwise continue and keep r� as upper bound.

2: Lower bound. Compute structured H1-optimal controller K(x1) by solving

minimize R(x) = kS(G;K(x))k1
subject to K(x) internally stabilizing

(15)

Keep r� = R(K(x1)) as lower bound. Choose r 2 [r�; r
�].

3: Optimize. For the current r 2 [r�; r
�], solve the following structured mixed H2=H1 program

minimize P(x) = kTw2!z2(P;K(x))k2
subject to R(x) = kS(G;K(x))k1 � r

K(x) internally stabilizing
(16)

The locally optimal solution is K(x2;1(r)).
4: Evaluate. Check whether K(x2;1(r)) o�ers an acceptable compromise between performance

and robustness. If it is not su�ciently robust, choose a smaller r 2 [r�; r
�]. If it is too robust

and lacks performance, use larger r 2 [r�; r
�]. Then loop back to step 3.

The di�erence with algorithm 1 is that LTR is no longer available to calibrate the procedure.
Instead, the lower bound r� is computed in step 2, based on a structured H1-synthesis with
objective R. This can be obtained via the matlab function hinfstruct [18]. The mixed H2=H1-
program is solved via [15], using the matlab function fmincon [19] as a presolver.

In order to solve (16) e�ciently, the solution x� of step 1, or the solution x1 of step 2, can be
used as starting points. It is also possible to obtain a starting point xr by stopping the minimization

9



in (15) at the moment when R(xr) � r is activated. This feature is indeed available in the matlab
function hinfstruct [18]. The controller K(xr) is then a favorable initial guess in (16), because
it already satis�es the constraint. The result extending Proposition 1 is the following

Proposition 4. Suppose xr with R(xr) = r is obtained as intermediate solution in step 2 of
algorithm 2 and used as initial guess in solving program (16). Then the locally optimal solution
K(x2;1(r)) of (16) is at least as robust as K(xr), and has better H2 performance.

Proof: The �rst statement says R(K(x2;1(r))) � r = P(K(xr)) which is clear, because a locally
optimal solution is also feasible.

The second statement follows from the fact that xr is used as initial guess. Then a descent
method will produce a locally optimal solution, which has better performance than K(xr). �

Remark 9. Notice that solutions to (14), (15), and (16) may no longer be computed by algebraic
Riccati equations or LMIs. While (14) can be solved by smooth optimization technique, see e.g. [20],
programs (15) and (16) are non-smooth and require speci�c bundle techniques. (BMI solvers could
at least in principle be used, but they su�er from the presence of Lyapunov variables, which lead
to numerical trouble). For nonsmooth H1 synthesis [21], and also [22{24], can be cited. A recent
implementation is hinfstruct in [18], which is based on [21]. Constrained programs like (16) are
discussed in [15, 25]. General mathematical background is given in [26, 27]. A recent approach
to combine nonsmooth techniques with classical nonlinear programming techniques is discussed
in [28].

Remark 10. In algorithm 2 we assume that P is stabilizable and detectable. However, we need to
be able to stabilize the plant internally with a controller K(x) of the imposed structure. Interest-
ingly, deciding whether or not such controllers exists is NP-complete for many practical structures
like PID, reduced-order, static, decentralized controller; see [29]. Practical ways to compute a
stabilizing K(x) are discussed in [30].

8 Numerical experiments

In this section we present three studies in which the proposed trade-o� based on mixed structured
H2=H1-control is tested. In each study performance of the nominal system is evaluated in the
H2-norm, which is optimized subject to a constraint on the controller structure (observer-based,
respectively, PID). In the �rst and second study the input sensitivity function, S, and in the third
the output sensitivity function, ~S, is used to assess robustness.

8.1 Mass-spring system

Our �rst study uses the mass-spring system [10] of Figure 1, which can be considered as a prototype
of a exible system. Considering the positions and the velocities of the two mass as the states
x = [x1 x2 _x1 _x2]

T , the state space representation is:

_x =

2664
0 0 1 0
0 0 0 1

� k
m1

k
m1

� f
m1

f
m1

k
m2

�k
m2

f
m2

�f
m2

3775 x+

2664
0
0
1
m1

0

3775 u
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y = [0 1 0 0]

8.1.1 LQG-LTR

According to algorithm 1 the procedure starts with a nominal LQG synthesis. The nominal LQG
controller KLQG is obtained with the covariance matrices W = BB> and V = 1, while Q = C>C
and R = 1; see [10]. This results in (Kf ; Kc) = ([0:94 0:06 0:97 0:75]; [1:49 1:93 0:13 1:87]) with
performance p� = P(KLQG) = 3:99. Following algorithm 1, the LTR procedure is now applied to
generate a curve (Kf (�); Kc). This is done by keeping W �xed and letting V = �I = �! 0, which
corresponds to using the input sensitivity function R(K) := S(K) = (I + KG)�1 as robustness
index. The LQG-LTR procedure is compared to ourH2=H1 trade-o� model (9) of section 4. Figure
2 compares performance and robustness of the di�erent controllers. The graph r(�) represents the
robustness of both the LTR and theH2=H1 controller, which are matched through the constraint in
program (9). As can be seen, performance is considerably improved without degrading robustness.

The parametric robustness of the LTR and the mixed H2=H1-controller have also been com-
pared when mass m2 and spring coe�cient k undergo changes around their nominal values, k0

and m0
2, in the square (k0 � 30%k0;m0

2 � 30%m0
2). Figure 3 compares the stability regions for

� = 0:001. The performance P(K(:001)) = 27:85 of the LTR controller corresponds to a degrada-
tion of � = 597% of the nominal performance p� = 3:99. Image (c) shows what the mixed H2=H1
controller K2;1(�) achieves at the same � = :001. On top of having signi�cantly better perfor-
mance P(K2;1(:001)) = 4:23, corresponding to � = 6%, it has also better parametric robustness.

Figure 4 displays the relative performance P(G;K)�P(G0;K)
P(G0;K)

for the controllersK of Figure 3 when the
same variation of the nominal parameters is considered. Since LQG and LQG-LTR controllers are
both not stabilizing over the entire square, their graphs are restricted to their closed-loop stability
regions. As can be seen, the mixed controller K2;1(�) performs best with regard to this criterion
over the square.

8.1.2 H2-optimal PID controller

In this section a desensibilized H2-optimal PID controller is searched for the mass-spring system.
As LTR is no longer available, the procedure follows algorithm 2, which starts by computing the
solution of the nominal program (14) for the structure (13). The H2-optimal PID controller Kpid;2

has p� = P(Kpid;2) = 12:61 and r� = R(Kpid;2) = 17:23. Continuing with algorithm 2, program
(15) for the structure (13) is solved, which provides the most robust PID controller with regard to
the sensitivity function S. This robusti�ed PID has performance p� = P(Kpid;1) = 152:8, which is
clearly degraded (p� � p�), while naturally r� = R(Kpid;1) = 6:39 is improved (r� < r�). Finally,
the compromise is achieved by solving program (16), which it is initialized with Kpid;1. Several
choices r 2 [r�; r

�] were tested, and �nally r = 17 was chosen, because it achieved parametric
robustness of Kpid;2;1 over the 40% square of variation in m2; k. Comparison with the two other
PIDs is made in Figure 5, where it can be seen that the mixed controller shows the best trade-
o� between performance and robustness (in the sense of the input sensitivity and parametric
robustness).

8.2 Lateral ight control of an F-16 aircraft

In our last study the improved LTR procedure was applied to lateral ight control of an F-16
aircraft. The nonlinear F-16 lateral model was linearized using the F-16 simulation program [31].
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The high �delity model is evaluated at altitude h = 4575m and velocity v = 152:5m=s, considering
steady wings-level ight conditions for trimming. The state variables are side slip angle �, bank
angle �, roll rate p and yaw rate r. Using a 6-DOF at-earth, body-axis aircraft model:

_� = cos 0
cos �0

ps +
sin 0
cos �0

rs
_� =

Y�
V
� + Y r

V
rs +

g cos �0
V

�� rs

_ps = L�� + Lpps + Lrrs + �l(ps; rs) + L�a(�; �a) + L�r(�; �r)
_rs = N�� +Npps +Nrrs + �n(ps; rs) +N�a(�; �a) +N�r(�; �r)

where
ps = p cos�0 + r sin�0

rs = r cos�0 � p sin�0;

�r and �n are incremental rolling and yawing moment due to ps and qs. L�a , L�r , N�a and N�r are
rolling and yaw moments due to aileron and rudder deections. �0, 0 and �0 are the trimmed
pitch angle, angle of attack and side slip where �0 = �0 � 0. For more details see [32] and [33].

8.2.1 Performance channel

As in [34], state variables �a and �r representing deection of aileron and rudder actuators are
included in the model, each with approximate transfer function 20:2=(s + 20:2). The goal of the
study is to make the bank angle � follow a reference command r�, while simultaneously keeping
the side slip angle � as close to r� = 0 as possible. The plant has u = [u� u�] as control input and
y = [� �] as measured output and is of type-0 with constant steady state error. To eliminate this
error, the dynamics are augmented by integrators in each control channel. Moreover, to balance
the singular values at dc, the system was augmented again by the inverse of the dc gain of the
system [34]. The overall state vector including aircraft state variables, actuators and integrators
is then x = [�; �; p; r; �a; �r; ��; ��]: The model for synthesis is shown in Figure 6, G(s). In this
�gure the precompensator block represents the inverse of the dc gain. This �gure also demonstrates
the observer structure K(s).

8.3 LTR procedure

In this study LTR recovery at the output breaking point is used, i.e., robustness is measured
via the output sensitivity function eS, and an observer-based controller is computed. Using V =
I2 and W = diag([0:1 0:1 0:1 0:1 0 0 10 10]) � 100; we �rst �x the Kalman gain Kf such that the
target loop gain C(sI � A)�1Kf has the desired performance. That this goal is achieved can be
seen in the singular value plot in Figure 7, and through the step responses of Figure 8 (solid lines).
LTR is now applied with Q = C>C and R = �I2, where � ! 0, and Kc(�) is tuned. With
q = 1=� this corresponds to the case discussed in Section 5. Figure 7 compares the singular values
� and � of the loop transfer functions of LQ (target) with those of LQG and LTR(� = 1e � 10).
In other words, the singular values of C(sI � A)�1Kf are compared with the singular values of
G(s)Kc(�)(sI � (A + BKc(�) +K>

f C))
�1Kf for � = 1 and � = 1e � 10. As can be seen, forcing

� ! 0 brings the singular values of the LTR controller near those of the target. In addition, this
also drives the system output responses toward the model responses of the target, as shown in
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Figure 8 (a) and (b). In Figure 8 (c) and (d), the control input signals of LQ, LQG and LTR are
compared.

Unfortunately, the LTR controller causes a large control input, which results in a large (de-
graded) performance. This loss of performance increases with ��1 as Figure 9 shows. In the same

�gure the robustness index RLTR = keSk1 = k(I +GKLTR(�))
�1)k

1
is displayed. As can be seen,

at the beginning (going from right to left) R increases and then decreases before stabilizing around
RLQ = k(I +GKLQ(�))

�1)k
1
. This proves that LTR with recovery at the output breaking point

is not a monotone procedure either.

8.3.1 Mixed synthesis

In order to overcome the loss of performance of the LTR controller, we apply algorithm 1, where
in program (16) the output sensitivity function eS replaces S. An appropriate parameter range
is � 2 [10�4 10�1:3], where robustness R decreases monotonically with �, while performance P
increases. Figure 9 compares performance after matching robustness of the H2=H1 and LTR
controllers via Proposition 1. A substantial improvement in performance can be observed.

The e�ciency of this new method is checked by considering changes of the ight parameters.
h = h0 ��h and v = v0 ��v are considered with �h = 305m and �v = 7:625m=s, the nominal
ight point being h0 = 4575 m and v0 = 152:5 m=s. The LTR controller and the corresponding
mixed controller are evaluated at � = 1:438e� 4. Figure 10 (a) and (b) compares the �rst output
and the �rst control input of the 8 neighboring ight points around the nominal ight point.
The diagram in Figure 10 (c) shows the improvement in performance obtained with the mixed
controller.

9 Conclusion

We have used mixed H2=H1 synthesis with structured control laws to obtain a quanti�ed trade-o�
between performance and robustness. Within the class of observer-based controllers our method
leads to an improvement of the LQG-LTR procedure. The latter is still useful to calibrate and
initialize the procedure. For other controller structures a di�erent idea is used to calibrate the
mixed program. The new method was applied to a mass-spring benchmark example and also to
lateral ight control of an F-16 aircraft. Experiments indicate that the new technique can also
be useful to enhance the parametric robustness of a design. In our tests the achieved degree of
parametric robustness was satisfactory.
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Figure 1: Mass-spring system. Nominal data are m1 = m2 = 0:5 kg, k = 1 N/m, f = 0:0025
Ns/m. Measured output is y = x2, control force u acts on m1.
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Figure 3: LQG-LTR study: stability regions as a function of the parameters variation.
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Figure 5: PID study. Stability regions as a function of the parameters variation.
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