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SUMMARY

Structured H∞-synthesis subject to time domain performance specifications is introduced. Our method
allows to control trajectories of the linearized system and the underlying nonlinear dynamics simultane-
ously. A non-smooth bundle optimization method for this class of programs is proposed and discussed.
Our approach is tested against two benchmark studies: control of a rotational actuator to attenuate vibration
noise, and control of a continuous crystallizer. Our algorithm gives a local convergence certificate and is
suited for systems with large state dimension. Copyright � 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Structured H∞-synthesis was introduced in [1] and represents a significant breakthrough in feed-
back control design of LTI systems. It allows to combine practically useful tuning techniques with
the rationale of H∞-control, bridging the gap between practice and theory. Structured H∞-synthesis
may for instance be used to design H∞-optimal PID controllers or H∞-controllers within other
practically useful controller structures or architectures. This includes observer-based controllers,
decentralized H∞-controllers, multi-channel and multi-scenario control, control with feed forward
structure, set-point and washout filters, and so on.

The purpose of the present paper is to apply the rationale of H∞-control within the frame of
iterative feedback tuning (IFT) techniques. IFT was popularized by Gevers [2] and co-workers
since the 1990s and has developed into one of the principal research areas in control, with a
large body of literature available. Boyd and Barratt [3] could with some right claim as of having
put forward the whole idea. In IFT closed-loop responses to specific input signals (steps, ramps,
sinusoids, etc.) are shaped using least squares methods in order to directly satisfy time-domain
specifications like limits on under- or overshoot, rise- and settling times, or control constraints
like saturation. Such criteria can also be influenced by the traditional frequency domain set-up,
but IFT allows to address these time domain criteria more directly. Another advantage of IFT is
that nonlinear and even data-driven systems can be handled with almost the same methods.

Yet, in some sense IFT throws away the baby with the bath water. Shaping responses exclu-
sively in the time domain deprives one of the sophisticated frequency domain strategies, such as
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H∞-control. So, the idea matures to combine these two seemingly separate worlds. This is the
intention of the present work.

2. CONSTRAINED H∞-PROGRAM

What we have in mind could best be referred to as constrained structured H∞-synthesis. In order
to explain the set-up, let us consider the following typical situation. Suppose we are given a plant

P :

⎧⎪⎨⎪⎩
ẋ = Ax + B1w+ B2u

z =C1x + D11w+ D12u

y =C2x + D21w+ D22u

(1)

in standard form, where x ∈Rn is the state, y ∈Rp2 the measured output, z ∈Rp1 the controlled
output, u ∈Rm2 the control, and w∈Rm1 the exogenous input. We wish to compute an output
feedback controller with a given structure

K (x) :

{
ẋK = AK (x)xK + BK (x)y

u =CK (x)xK + DK (x)y,
(2)

which stabilizes the plant (1) internally and optimizes the transfer w→ z in the H∞-norm among
all stabilizing controllers K (x) with the same structure. Here the term structure indicates that
the state-space representation (AK , BK ,CK , DK ) of K depends smoothly on a design parameter
x∈Rr .

Suppose a locally optimal structured H∞-controller K (x∗) has been computed. That is, K (x∗)
stabilizes the plant (1) internally, and the H∞-norm of the closed-loop channel w→ z is locally
minimal among all internally stabilizing controllers of the same structure, i.e.

‖Tw→z(K (x∗))‖∞�‖Tw→z(K (x))‖∞ for all x near x∗. (3)

Here Tw→z(K ,s) denotes the closed-loop transfer function w→ z if controller K is used, and

‖Tw→z(K )‖∞ = max
�∈[0,∞]

�(Tw→z(K , j�))

is the H∞-norm of the closed loop transfer matrix Tw→z(K , ·). In practice this controller K (x∗)
now undergoes a posteriori testing. Typically this consists in displaying time-domain responses

z(t), z =Tw→z(K (x∗))w0

to certain test inputs w0(t) such as steps, ramps, sinusoids. If some of these responses show
unsatisfactory behaviour, such as unacceptable overshoot, bad tracking, long settling times, or
actuator saturation, the designer is forced to modify the closed-loop transfer channel w→ z in order
to achieve better results. This process usually consists in modifying frequency filters and is based
on trial-and-error. Advanced intuitive skills are needed in particular for MIMO systems, where
graphical tools fail and appropriate substitutes do not exist. Notwithstanding, posterior testing
could also involve closed-loop transfer channels Tw′→z′ other than the one used to compute K (x∗).

Even if the above process allows to identify a new closed-loop channel T �
w→z , the corresponding

new locally optimal H∞-controller K (x�) will satisfy the time-domain specifications only at the
cost of degrading the good performances of K (x∗) with respect to the original channel Tw→z . To
avoid this, we propose the following constrained optimization program

minimize ‖Tw→z(K )‖∞
subject to z�(t)�z(K , t)�zu(t) for all t�t�t

z(K ,s)=Tw→z(K ,s)w0(s)

K = K (x),x∈Rr

(4)
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where w0 represents an input test signal as above, and where z�(t) and zu(t) are pre-specified
lower and upper bounds on certain critical time intervals [t, t ].

In other words, with (4) we propose to include the time domain constraints directly in the
design process, instead of using them a posteriori. The advantage is that the original criterion
‖Tw→z(K )‖∞ does not have to be abandoned. Instead, the two (or more) concurring objectives
are combined and a trade-off is achieved.

Remark
A typical application is PID control for MIMO systems, which today uses heuristic tuning tech-
niques. The reason is that traditional ARE-based synthesis [4] applies to unstructured (full order)
controllers only. In state space PIDs can be parametrized as

Kpid(x)=

⎡⎢⎢⎢⎣
0 0 Ri

0 −�Im2 Rd

Im2 Im2 D

⎤⎥⎥⎥⎦ (5)

so the decision vector is x= [�,vec(Ri ),vec(Rd ),vec(D)]. One would typically have a constraint
��� in parameter space in order to assure that the controller is realizable and in particular,
implementable. (Strictly speaking, (5) is then an approximate PID.) Notice that dim(x)=3m2 p2 +1
while the controller is of order nK =2m2.

Solving the H∞-control problem with respect to the structure Kpid(x) provides what we call
H∞-optimal PID controllers. Computing H∞ PID controllers is possible via the method of [1].

3. TIME DOMAIN RESPONSES OF THE NONLINEAR SYSTEM

It is tempting to go one step further. Consider the case where P is obtained by linearizing a
nonlinear time invariant system

P̃ :

⎧⎪⎨⎪⎩
ẋ = f (x,w,u)

z =g(x,w,u)

y =h(x,w,u)

(6)

about its steady state at the origin. That is, f (0,0,0)=0, g(0,0,0)=0 and h(0,0,0)=0, A=
f ′
x (0,0,0), B1 = f ′

w(0,0,0), etc. The traditional linearizing approach neglects nonlinear effects and
works with P . One computes a locally optimal structured H∞ controller K (x∗) for the transfer
w→ z of P and hopes that K (x∗) will also be appropriate for P̃ . This is assured if the nonlinearity
is mild.

Suppose, however, the system shows significant nonlinearity in some components. Then it is
reasonable to work directly with the nonlinear system, by shaping the corresponding trajectories
of P̃:

z�(t)�̃z(K , t)�zu(t) for all t�t�t (7)

where z̃(K , t)= T̃w→z(K , t,w0) now denotes the response of the nonlinear plant P̃ to the input
w0(t). The novelty, which we propose here, is to combine features of P and P̃ in a single set-up.
This leads to the optimization program

minimize ‖Tw→z(K )‖∞
subject to z�(t)�̃z(K , t)�zu(t) for all t�t�t

z̃(K , t)= T̃w→z(K , t,w0)

K = K (x),x∈Rr .

(8)
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Here one uses the linearized system to assess the H∞-norm of the transfer function w→ z. At
the same time program (8) allows to control some of the nonlinear outputs z̃i directly on critical
time intervals [t, t], where they differ significantly from their linearizations. As in (4) we allow
the controller K (x) to have a pre-specified structure, so that the optimization variable in (8) is the
structural design parameter x, and we include parameter constraints g(x)�0 in (8) if required.

Remark
Observe that we continue to seek linear controllers for nonlinear systems, so our method is not to
be confused with a genuine nonlinear H∞ approach like for instance [5]. It is less ambitious (but
perhaps more realistic) to assume that only some of the states of P̃ show genuine nonlinearity,
and (8) allows to address these individually using constraints like (7). If successful, the advantage
of (8) is that a linear controller can be used. On the other hand, the set-up can be combined with
genuine nonlinear strategies. If a change of coordinates reducing nonlinearity is applied before
linearizing the system, our methodology is still applicable, although the final controller will then
be nonlinear.

Remark
During the rest of the paper, we shall continue to use the symbols Tw→z(K ,s) and z(K ,s) for
closed-loop transfer channels and responses of the linearized plant P , while T̃w→z and z̃(K , t) will
denote channel and response of the nonlinear plant P̃ . The steady state is at 0.

4. HARD CONSTRAINTS IN IFT

The philosophy of IFT is to shape closed-loop responses z(K , t) or z̃(K , t) by optimizing least
squares objectives like

min
K

∫ t

t
(z(K , t)−zref(t))

2 dt, (9)

where zref(t) denotes a desired or reference response of the closed-loop system. Recently, we have
developed an alternative approach [6–9], which allows to replace soft constraints of the form (9)
by hard constraints as in (7). For this we apply non-smooth optimization methods to the constraint
violation function

min
x∈Rr

max
t�t�t

{0, z�(t)−z(K (x), t), z(K (x), t)−zu(t)}. (10)

Program (10) ends with an optimal value 0 if K (x) satisfying the constraints (7) is found, while
a value >0 indicates a local minimum of constraint violation, meaning failure to satisfy the
constraints with the given controller structure from the chosen starting point x0. In [6–9] this type
of non-smooth optimization program is addressed by a bundle technique. Currently, we will extend
this approach to solve programs (4) and (8).

In our experiments, trajectories of the linearized system z(K , t) are computed with the Matlab
functions lsim [10]. For trajectories z̃(K , t) of the nonlinear system we have used forward differen-
tiation based on standard Runge-Kutta solvers, which corresponds to the direct mode in automatic
differentiation. As soon as the state dimension of the plant gets large, say �300 states, it may
be preferable to use the adjoint equation, which corresponds to the reverse mode of automatic
differentiation. For details see [11].

5. SUBGRADIENTS OF THE H∞-NORM

The H∞-norm has been discussed at length in [1], so we can be very cursory here. Typical
subgradients of the H∞-norm as a functional on the space of stable transfer matrices are already
given in [3]. Applying suitable chain rules gives the full characterization of the subdifferential of
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f (x)=‖Tw→z(K (x))‖∞. Clarke regularity [12] of the composite function x �→‖·‖∞◦Tw→z(·)◦
K (x) allows to apply a non-smooth chain rule, which leads to the characterization of the �∈� f (x) as

�= dK

dx

∗ dT ∗
w→z

dK
�,

where �∈�‖·‖∞(Tw→z(K (x))) is a subgradient of the H∞-norm in the convex sense. The form
of these subgradients � and of the adjoint of dTw→z/dK have been given in [1], while dK/dx and
its adjoint depend on the controller structure and have to be provided by the user in each case.

Computation of the H∞ norm as well as the peaks of the frequency curve � �→Tw→z(K , j�)
for fixed K is based on the bisection method of [13], which means that function values may
occasionally be corrupted by computational noise. Subgradients of the H∞ norm use linear algebra
procedures, but require knowledge of the peak positions. Fortunately, these numerical errors are
rarely observed in practice.

6. ALGORITHM

The algorithmic approach to the constraint program (4) or (8) is based on a three-stage procedure.

Algorithm for program (8)

1: Initial phase. Compute a locally optimal H∞ controller K (x1) with pre-assigned structure.
Alternatively, compute a structured K (x′

1) such that the time domain constraints (7) are satisfied.
2: Smooth optimization. Use x1 or x′

1 as initial guess to run a smooth SQP-solver in which
program (8) is solved as if all functions were smooth. For every non-smooth function pick a
single subgradient as a substrate for the gradient. The result of phase 2 is K (x2).

3: Non-smooth phase. Use x2 as initial guess to run the non-smooth progress function method
of Section 8. The result is K (x3), which has a non-smooth local optimality certificate.

We expect the smooth optimization phase 2 to be fast and bring us close to a local optimum of
(4) or (8) in the majority of cases. Notice, however, that even when x2 turns out locally optimal, the
usual smooth optimality tests in SQP will not apply because (8) is non-smooth. Therefore, phase
3 is always needed, either to continue optimization if the smooth method encounters difficulties,
or just to furnish a non-smooth local optimality test.

When phase 2 ends with x2, we have the following possibilities. There are the usual reasons for
failure in smooth SQP methods, like local minima of constraint violation, or insignificant progress.
To these we have to add the case where the SQP solver in phase 2 signals a local minimum
(a KKT point), but erroneously so. We may indeed encounter dead points, where the smooth
method stops, but where a non-smooth method will achieve further progress till a genuine local
minimum (or KKT point) is reached. While this seems a long list of possible failure, the good news
is that even if phase 2 fails to find a KKT point, it will often bring us close to a local minimum
and give a good starting point for phase 3.

The individual steps of this scheme will now be discussed. Phase 1 uses structured H∞-synthesis
[1] to compute K (x1) or the methods mentioned in Section 4 to compute K (x′

1). Phases 2 and 3
will be discussed subsequently.

Remark
H∞ optimization as presented in [1] requires an initial closed-loop stabilizing controller, which
we compute by the method of [14]. We mention that the idea to optimize stability of closed-loop
systems directly via the spectral abscissa was pioneered by Burke et al., see e.g. [15–17].
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7. SMOOTH OPTIMIZATION

Phase 2 of Algorithm 1 is heuristic, because no convergence or optimality certificate whatsoever
can be proved by means of a smooth technique if program data are non-smooth. And yet, phase 2
is important in practice because it often finds a solution. Even in the case of failure, phase 2 may
still provide good initial guesses for phase 3. So how should phase 2 be organized?

In order to apply a sequential quadratic programming (SQP) algorithm to program (4) or (8),
we are somewhat restricted in our choice due to the following facts:

1. Gradients are available almost everywhere, but not everywhere. As a substitute one may pick
Clarke subgradients.

2. We have observed that using finite difference approximations to provide substitutes for the
gradients is a bad idea. On top of being costly, they are also often of bad quality. There is
no good explanation for this badness, other than recalling that gradients do not really exist.

3. Second order information is definitely unavailable. Therefore, methods using BFGS type
updates appear to be a good option. Software based on these criteria is for instance Powell’s
[18], Schittkowski’s nlpqlp [19], or the Matlab function fmincon [20].

4. A fourth aspect, maybe the most troublesome, is that (8) has a hidden constraint: closed-loop
stability of K (x). Indeed, the H∞-norm f (x)=‖Tw→z(K (x))‖∞ is undefined for candidate
controllers K (x), which are not stabilizing. While it is in principle possible to maintain
closed-loop stability of K (x) during the iterations, for instance by a backtracking line-search
if a destabilizing iterate is encountered, the difficulty is that solvers are usually not prepared
for this situation, so that the tangent program will every now and then produce non-stabilizing
controllers, which lead to infinite function values during line-search, causing breakdown of
the SQP solver. This difficulty is best avoided if the solver uses reverse communication, where
one may intervene during the optimization process if infinite function values f (x)=∞ occur.
(In our opinion this is one of the reasons that gives reverse communication an advantage
over those strategies where the program data are passed as a function arguments into the
optimizer).

The problem of destabilizing candidate controllers may to some extent be defanged if the
representation of the closed loop plant [A(K ), B(K ),C(K ), D(K )] is minimal. In that case the
objective f (K ) behaves like a barrier function as controllers approach the boundary of the region
of internal stability, and this will help to keep iterates K within the region of finiteness of f . In our
current testing the phenomenon was rarely observed, but in [6, 21] we had previously identified
this as a potential difficulty for SQP methods in control. SQP as a general tool gains much of
its potential by allowing unfeasible iterates during the optimization. In our current context the
presence of time domain constraints seems rather beneficial to maintain closed-loop stability of
trial points.

8. NON-SMOOTH PROGRESS FUNCTION

At the core of our scheme is phase 3, which uses non-smooth optimization. The theoretical
foundations are given in [22–24]. Here we recall the main ingredients and represent the algorithm
by a flowchart.

In abstract form, program (8) may be written as min{ f (x) : g(x)�0}, where f and g are potentially
non-smooth functions. We assume that Clarke subgradients [12] of f and g are available. For the
criteria used in (4) and (8) these subgradients have been made explicit in the previous sections.

The algorithm of Figure 1 generates the sequence x j , j =1,2, . . . of so-called serious steps,
which represent the outer loop of the algorithm. In the flowchart this part is the outer box. At the
current iterate x j of the outer loop we consider the progress function

F(x,x j )=max{ f (x)− f (x j )−�[g(x j )]+,g(x)−[g(x j )]+}, (11)
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Figure 1. Flowchart of non-smooth progress function algorithm.

where [u]+ =max{u,0} denotes the positive part, and �>0 is fixed once and for all. Our algorithm
seeks a new serious iterate x j+1 such that F(x j+1,x j ) is significantly below the value of F(x j ,x j )=
0. In the end, every accumulation point x∗ of the sequence x j will satisfy 0∈�1 F(x∗,x∗), where �1
denotes the Clarke subdifferential with respect to the first coordinate. It follows that every such x∗
is a F. John critical point of (8), which is as close to being a local minimum as one can expect; see
[23]. In practice, x∗ is either a local minimum of (8), or a local minimum of constraint violation.

How do we compute the new serious step x j+1, and what is meant by sufficient decrease
F(x j+1,x j )<F(x j ,x j )=0? We first build local models f̃ of f and g̃ of g in a neighbourhood of
the current x j . For the H∞ norm we know that

f (x)= max
�∈[0,∞]

�(Tw→z(x, j�)),

where Tw→z(x,s) denotes the closed loop transfer function w→ z with controller K (x). Now
we put

f̃ (x,x j )= max
�∈[0,∞]

�(Tw→z(x j , j�)+ DxTw→z(x j , j�)(x−x j )),

where Dx denotes derivatives with respect to the controller parameter x. We call f̃ (·,x j ) the
ideal model of f at x j . To get the idea, the ideal model of a function f (x) of class C1 is
simply f̃ (x,x j )= f (x j )+∇ f (x j )T (x−x j ). For a composite function like f =�◦ F with smooth
F :Rr →Rp×m we use partial linearization f̃ (x,x j )=�(F(x j )+ Dx F(x j )(x−x j )).

For time domain constraints z�(t)�̃z(x, t)�zu(t) we use the non-smooth expression (10). Clarke
subgradients of (10) can be found in [6]. Notice a difference with Section 7, where hard constraints
(7) are discretized at certain t = t1<t2< · · ·<td = t . In the non-smooth case we address the semi-
infinite constraint (7) directly, so no discretization is used. This is an advantage if response curves
exhibit sharp peaks, which could be missed by the discrete set ti .

Having defined f̃ and g̃, we obtain the following approximation F̃ of F ,

F̃(x,x j )=max{ f̃ (x,x j )− f (x j )−�[g(x j )]+, g̃(x,x j )−[g(x j )]+},
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called the ideal model of F . We consider F̃(·,x j ) a substitute for the linearization (first-order
expansion) of F(·,x j ) at x j . Such a substitute is required because f and g are non-smooth.

If f and g are smooth, the ideal model F̃ is the maximum of two affine functions and can be
used directly to generate descent steps. In the non-smooth case F̃ is convex in the first variable,
but may still be too rich to be useful in the tangent program. We need a coarse approximation of
F̃(·,x j ), which we call the working model of F at x j . It is denoted F̃k(·,x j ) and has a counter k to
it because it is improved iteratively in the inner loop of our algorithm, which uses that counter k.
The inner loop is shown in the box in the lower right part of the flowchart (Figure 1).

Like F̃(·,x j ) the working model F̃k(·,x j ) is convex in the first argument. It is constructed
by assembling support planes of the ideal model. In particular, this means F̃k�F̃ for all k. We
distinguish four types of such planes:

1. Exactness plane,
2. Cutting plane,
3. Aggregate plane,
4. Heuristic planes.

The exactness plane, item 1, is of the form m0(x)= F(x j ,x j )+�T(x−x j ), where �∈�1 F(x j ,x j ).
This means m0 is an affine support function of F̃(·,x j ) at x j . Including m0 in the model F̃k(·,x j )
implies F̃k(x j ,x j )= F(x j ,x j ) for all k, hence the name exactness plane.

Cutting planes and aggregate planes are constructed iteratively. Suppose we have already built
model F̃k(·,x j ) at the kth instance of the inner loop belonging to the j th instance of the outer
loop. Then, we solve the tangent program with proximity control

min
y∈Rn

F̃k(y,x j )+ �k

2
‖y−x j‖2, (12)

where �k>0 is the so-called proximity control parameter. Suppose the solution of (12) is yk , called
the trial step. Fixing 0<�<�<1 once and for all, we compute the quotient

	k = −F(yk,x j )

−F̃k(yk,x j )
, (13)

which tests agreement between F and the working model F̃k at yk . If 	k��, then we accept the
trial step yk as the new serious iterate, x j+1 =yk , because F decreases sufficiently. This is called
a serious step. If 	k<�, then yk is rejected, because decrease of F is insufficient, and we call this
a null step. Here our working model needs to be improved at the next inner loop iteration k+1.

In the case of a null step, we pick a subgradient �k ∈�1 F̃(yk,x j ) and define mk(x)= F̃(yk,x j )+
�T

k (x−yk) as the cutting plane. We include mk(·) as affine support function into the upcoming
model F̃k+1(·,x j ).

Finally, by the definition of yk , we have 0∈�1 F̃k(yk,x j )+�k(yk −x j ). Therefore, �∗
k =�k(x j −

yk)∈�1 F̃k(yk,x j ). But F̃k(·,x j ) is by induction already built as the convex envelope of older planes
of the four types. That means, the element �∗

k can be written as �∗
k =∑r


=1 �
�
, �
�0,
∑r


=1 �
 =1,
where m
(x)=�
+�T


 (x−x j ) are planes used to build F̃k(·, x j ). Then, put �∗ =∑r

=1 �
�
 and let

m∗
k (x)=�∗+�∗T

k (x−x j ) be the so-called aggregate plane.
We include m0,mk,m∗

k among the affine minorants of F̃k+1(·,x j ). In addition, we allow to
include all sorts of heuristic planes in the model to enrich it. This may be recycled planes from
previous steps k,k−1,k−2, . . ., or anticipated cutting planes, as used in [24].

Before re-running the tangent program (12) with the new working model, we have to modify
the proximity control parameter �k . It is the management of �k →�k+1 that makes the inner
loop (Figure 1 lower right part) somewhat technical. The general idea is to avoid increasing �k
prematurely, because large �k leads to small trial steps. So we set forth maximum resistance before
we ease up and increase �k . In order to decide, a secondary control parameter 	̃k is introduced

	̃k = −F̃(yk,x j )

−F̃k(yk,x j )
.
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It tests agreement between working model and ideal model at yk . Fixing 0<�<̃�<1 once and for
all, one checks whether 	̃k�̃�. If this is the case, �k is increased, for instance, �k+1 =2�k . This
is referred to a tightening proximity control. Otherwise, the third control parameter 	̂k =	k /̃	k
is compared to �̂∈ (0,1). If 	̂k�̂�, then �k+1 =�k , otherwise �k is increased. It can be shown that
updating F̃k → F̃k+1 and �k →�k+1 in this way guarantees finding a serious step after a finite
number of trials k. In other words, the inner loop is finite if 0 �∈�1 F(x j ,x j ).

The last ingredient of the algorithm is when x j+1 =yk is accepted at inner loop counter k j at
the j th outer loop, i.e. when 	k��. If 	k j

>�, then the proximity control parameter is re-started

with �1 = 1
2�k j in the j +1st outer loop. That is, proximity control is slackened. On the other hand,

if ��	k j
�� then we initialize as �1 =�k j , so proximity control is maintained.

Remark
A detailed convergence theory of our method is not within the scope of the present work, but can
be found in [23]. The control problems treated here have so far only be addressed by heuristic
techniques, and our method gives a first rigourous approach. This may to some extent account for
the rather complex structure of the algorithm.

9. ROTATIONAL ACTUATOR TO STABILIZE TRANSLATIONAL MOTION

The rotational actuator shown in Figure 2 was proposed as a benchmark test example in [25]. Its
nonlinear dynamics are

(M +m)Z̈ +k Z = −me(�̈cos�− �̇
2

sin�)+ F

(I +me2)�̈ = −meZ̈ cos�+ N
(14)

The cart moves horizontally with position Z [m], and the pendulum with angular position � [rad] is
used as a control torque N . This type of device is for instance used to suppress oscillatory motions
of the cart or vibration noise represented by the external disturbance F . The physical parameters
are given in Table I.

Coupling of the rotational and translational motions is represented by the dimension free
parameter

�= me√
(I +me2)(M +m)

.

The system has four states (Z , Ż ,�, �̇), the measured output is y = (Z ,�), the control is u = N . The
regulated outputs are z =Wz(Z ,�, N ), where Wz =diag[16.1,0.3162,14.1] reflects that we want the
off-sets Z and � small. Including the control N among the outputs is standard to avoid exceedingly

M

N
l,e

m

z

k

F

Figure 2. Rotational actuator.
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Table I. Physical parameters of rotational actuator.

Mass of cart M =1.3608kg
Mass of pendulum m =0.096kg
Pendulum eccentricity e=0.0592m
Moment of inertia I =2.175e−4kgm2

Spring stiffness k =186.3N/m
Coupling parameter �=0.2001

Table II. Initial and final controllers for low frequency constraint.

Test # Controller Order ‖Tw→z‖∞ Constraint

— H∞ 4 5.2327 —
1 K1,init 1 5.2340 0.0390

K1,final 1 5.2960 −1.8521e−5
2 K2,init 1 5.5232 −3.2603e−4

K2,final 1 5.2866 1.3174e−7

Test 1 starts with unfeasible but good H∞-norm, test 2 starts with feasible but bad H∞-norm. The H∞ norm
of TF→Wz (Z ,�,N ) is optimized.

Table III. Rotational actuator. Initial and final controllers for time domain constraints on response
to low frequency sinusoidal input.

Test # Controller

1 K1,init = [−4.837 −9.233 −19.27 −2.287 5.113 −9.694]
K1,final = [−3.0942 −17.4656 −15.5944 −1.9478 −5.2216 −11.3253]

2 K2,init = [−1.8077 0.9335 −2.5380 −1.0310 1.0772 −1.7093]
K2,final = [−1.5738 0.8750 −2.5509 −1.0299 1.7263 −1.9793]

Table IV. Rotational actuator. Initial and final first-order controllers for time domain constraint on high
frequency sinusoidal input.

Test # Controller

3 K3,final = [−7.2111 −9.3198 −18.1361 −4.3229 −2.3483 −11.8707]

4 K4,init = [−3.3632 4.9686 −4.1849 −1.9526 3.7555 −2.5335]
K4,final = [−3.3159 4.9527 −4.1239 −1.7697 3.9251 −2.6908]

In test 3 the initial guess was K1,init.

large control actions. The external force w= F acting on the cart represents a disturbance, which
is the source of the vibratory motion to be attenuated.

In a first test we computed the full order H∞ controller and a locally optimal H∞ controller
K1,init of order nK =1. The H∞ norm of the closed-loop channel F →Wz(Z ,�, N ) is shown in
column 4 of Table II. Lines 1 and 2 in Table II show that the closed-loop gain of the optimal
first-order H∞ controller is very close to what may be achieved with the full order H∞ controller.

Given this observation, the goal of the study is to achieve satisfactory H∞ control subject to
time domain constraints with a first-order controller. The design parameter is therefore x∈R6 with

K (x)=
[

x1 x2 x3

x4 x5 x6

]
, (15)

while a full order (unstructured) controller would have 30 parameters. In Tables III and IV we
display this as K = [x1 x2 · · · x6] for space reasons.
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Figure 3. Rotational actuator. Closed-loop response �̃(t) to high (right) and low (left) frequency
sinusoidal input signal w0(t)=sin�t . Curves with the smallest amplitude (left and right) show the
open-loop, top curves show the closed-loop with locally optimal first-order H∞-controller K1,init.
In both cases the constraint is violated. The middle curves show responses with K1,final (left) and

K3,final (right) obtained by (8).

Table V. Rotational actuator. Initial and final first-order controllers for constraints on time domain response
to high frequency sinusoidal input.

Test # Controller ‖Tw→z‖∞ Constraint

3 K1,init 5.2340 3.7000e−3
K3,final 5.2717 −4.5593e−5

4 K4,init 5.3827 −1.9040e−7
K4,final 5.2591 −3.0050e−8

Test 3 uses initial K1,init from test 1. Test 4 starts with feasible K .

Posterior inspection of the optimal H∞ controller in closed loop (top curve in Figure 3 left and
right) shows that the time domain response �̃(t) of the nonlinear system, excited by a sinusoidal
input w0(t)=sin�t , shows unsatisfactory transient behaviour between 0 and 3 s, whereas the
steady-state response is acceptable. We therefore added time domain constraints on �̃(t) and Z̃ (t)
together with a constraint on closed-loop poles. This leads to the optimization program

minimize ‖TF→Wz (Z ,�,N )(K )‖∞

subject to �min(t)�̃�(K , t,w0)��max(t) as in Figure 3

Zmin(t)�Z̃ (K , t,w0)�Zmax(t) as in Figure 5

�(A(K ))�−0.15

K as in (15)

(16)

where A(K ) denotes the closed-loop system matrix. Here �(A)=max{Re() :∈spec(A)} is the
spectral abscissa of A, and the constraint �(A(K ))�−0.15 guarantees the closed-loop stability.

According to our previous terminology, �̃ denotes the angular position of the nonlinear system,
in response to the sinus w0(t)=sin�t , while � is as usual the off-set of the linearized system about
the steady state �̃=0. The objective and the constraint ��−0.15 clearly refer to the linearized
system. Similar arrangements hold for Z and Z̃ . Each instance of program (8) has six unknown
variables and 93 inequality constraints (2×23 for �̃, 2×23 for Z̃ , and one for �).

The time domain constraints of (16) are represented in column 5 of Tables II and V, which
displays the maximum violation of all constraints. The optimal H∞-controller K1,init does not
satisfy the time domain constraints, hence the value >0 in column 5. Alternatively, we have used
other initial controllers K2,init respectively K4,init, which do satisfy the time domain constraints
strictly, hence the values <0 in columns 5 of Tables II and V. On the other hand, these controllers
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have large H∞ norm (column 3). Optimal controllers (solutions of (8)) behave well in both respects,
and activate some of the constraints. This leads to the values 0 in columns 5 of the two tables.

Using (8) allows to significantly reduce the unacceptable transient peak in �̃(t) (Figure 3), at the
cost of only a very mild increase of the H∞ norm (Figure 6). The control input is shown in Figure 4.
This comes with a significant reduction of the H2 norm under a performance constraint on the H∞-
norm, a result which one could try to obtain directly using mixed H2/H∞ optimization as in [23].

Remark
Figure 6 shows that (8) reduces the L2-norm and also L1-norm in frequency domain. Reduction of
the frequency L1 norm indicates reduction of the time domain L∞-norm, and therefore a reduction
of the peak, but there is no tight duality relation between the two norms, as opposed to the time and
frequency L2 norms. Reducing the time domain peak by optimizing the frequency L1 or L2 norm
is therefore justified heuristically, but less stringent than optimizing the time domain constraint
explicitly. Optimizing the peak-to-peak norm would be an alternative, but this norm is harder to
compute than the H2 and H∞-norms [26], and no attempt to optimize this criterion has to date
been reported.

10. CASE STUDY: CONTINUOUS CRYSTALLIZER

Our second study uses the model of a continuous crystallizer presented by Vollmer and Raisch
[27] (see Figure 7), where crystal growth is modelled by mole and population balance equations.
The mole balance is

M
dc

dt
= q(	− Mc)

V
+ 	− Mc

�

d�

dt
+ q Mc f

V �
− q	

V �

(
1+kv

∫ ∞

0
(h p(L)−1)n(L , t)L3 dL

)
�(t) = 1−kv

∫ ∞

0
n(L , t)L3 dL

(17)

with initial condition

c(0)=c0,

and the population balance

�n(L , t)

�t
=−G(c(t))

�n(L , t)

�L
− q

V
(h f (L , t)+h p(L))n(L , t), (18)

with initial and boundary conditions

n(L ,0)=n0(L), n(0, t)= B(c(t))

G(c(t))
, G(c)=kg(c−cs)g, B(c)=kb(c−cs)b.

Here c(t) is the solute concentration and n(L , t) the crystal size distribution (no. of crystals per
crystal length L per volume) at time t , also known as nuclei density. Both c and n are assumed
space independent due to ideal mixing. The classification functions are

h f (L , t)=
{

R1(t) if L<L f

0 if L�L f
h p(L)=

{
1 if L<L p

1+ R2 if L�L p.

The parameter values are gathered in Table VI and are originally adopted from [28]. Some typical
values are given in Table VIII.

In industrial crystallizers operated in open loop, the crystal size distribution (CSD) may exhibit
bad damping or sustained oscillations (see Figure 8 left, and Figure 10 top), which affect product
quality, hence the need for feedback control. The challenge addressed in [27] (study 1 in Table VII)
was to control the system based on measuring only solute concentration c(t) and by acting on the
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Table VI. Parameters of continuous crystallizer.

Feed rate q 0.05 �
min

Total volume V 10.5 �
Fines removal cut size L f 0.2 mm
Product cut size L p 1 mm
Fines removal constant R1,ss 5 —
Product removal constant R2 2 —
Growth rate constant kg 0.0305 mm�

min mol
Growth rate exponent g 1 —

Nucleation rate constant kb 8.36e9 �3

min mol4
Nucleation rate exponent b 4 —
KCl crystal density 	 1989 g

�

KCl mole mass M 74.551 g
mol

Volumetric shape factor kv 1.112e−7 �
mm3

Saturation concentration cs 4.038 mol
�

Crystal size distribution n(L , t) — #
mm�

Steady-state CSD nss(L) — idem
Slurry rate m(L , t) — g

mm
Overall crystal mass m(t) — g
Solute concentration c(t) — mol

�

Steady-state SC css 4.0918 idem
Solute feed concentration c f (t) — idem
Steady-state SFC c f ss 4.4 idem
Fines removal rate R1(t) — —

Table VII. Possible inputs and outputs.

Study Input(s) Output(s)

1 Solute feed concentration Solute concentration SISO
c f (t)−c f ss c(t)−css [27]

2 Solute feed concentration solute concentration
fines dissolution rate overall crystal mass MIMO
R1(t)− R1ss 	kv

∫ ∞
0 (n(L , t)−nss(L))L3 dL

Table VIII. Typical values.

Crystal size (mm) 0�L�2
Slurry rate (g/mm) 0�m(L , t)�400
CSD (1/mm l) 0�n(L , t)�1e7
Feed concentration (mol/l) 4.3�c f (t)�4.5

solute feed rate c f (t) alone, while older strategies control the process through the fines dissolution
rate R1(t).

The control strategy in [27] is original. The SISO system c f −c f ss →c−css is considered. The
authors do not discretize the population balance (18) with respect to L . Instead, they linearize
the system about the steady state (css,nss(L)) and Laplace transform with respect to time t . The
steady state can be computed analytically. The linear ODE in L so obtained is solved analytically.
This provides the infinite dimensional transfer function G(s)=�c(s)/�c f (s). After approximating
exponential terms by polynomials, a finite dimensional system is obtained and used in H∞ control.

A characteristic parameter of the crystallization process is the mass density function m(L , t)=
	kvn(L , t)L3, also known as the slurry density or slurry rate. In study 2 we assume that not only
solute concentration, c(t), but also the overall crystal mass m(t) :=∫ ∞

0 m(L , t)dL are measured.
In total this leads to two outputs (�c, �m) and two inputs (�c f , �R1). It is clear that the infinite
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Figure 4. Rotational actuator. Control torque u = N for high frequency (right) and low
frequency (left) sinusoidal input. Dashed curves show optimal first-order H∞-controller

K1,init, continuous curves show solutions K1,final and K3,final of (8).
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Figure 5. Rotational actuator. Closed-loop system response Z̃ (t) to sinusoidal input (high frequency
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(right) with additional time-domain constraint (solutions of (8)).
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Figure 6. Rotational actuator. Maximum singular value plot for closed-loop transfer channel TF→Wz (Z ,�,N )
at K1,init (left and right upper curves) versus K1,final left and K3,final right lower curves. Satisfying the

time domain constraints reduces the H2-norm, with only a slight increase of the H∞ norm.

dimensional strategy outlined above is more complicated in the MIMO case (study 2 in Table VII),
but still in reach. Here we follow a different line, where control is to be achieved with the most
natural discretization techniques.
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q, cf 
q, hf.n, c

q, hp.n, c

Figure 7. Continuous crystallizer model from [27]. Ideal mixing is assumed, particle breakage and
agglomeration are neglected. Growth rate is size independent. Fines are recycled at variable rate R1(t).
Particles are removed at constant rate R2. Solute feed and fines removal rate are possible controls. Solute

concentration and overall crystal mass are possible measurements.

Figure 8. Mass density m(L , t) in open loop (on the left) shows sustained oscillations. Closed loop with
structured constrained H∞ controller (on the right) shows stable behaviour as the system moves from
(c0,n0) to (css,nss), witnessed by the cylindric form of the surface for large times t . The old steady-state
profile m0(L) can still be seen along the t =0 axis, while the new steady-state curve mss(L) curve is

almost established around t =5.

The most straightforward and probably also the most natural approach to control a system like
(17), (18) is to discretize (18) with respect to crystal size L and apply standard control techniques
to the system of ODEs. Surprisingly, this has a bad reputation. The reason is the following: In
order to obtain a realistic simulation of the system, between 1000 and 2000 time steps �t and
spatial steps �L have to be chosen e.g. for a second-order upwind scheme, which appears too
large for controller synthesis. One may argue that for feedback control, a realistic description of
the input–output behaviour of the system is sufficient, where high-frequency components will be
useless. System reduction should give a better suited model. Figure 12 shows that one should
succeed in eliminating most of the open-loop poles, as they extend toward −∞.

Model reduction could be based on the Matlab function modred [29]. As the system is unstable
in open loop, the function balreal (see [29]), which one would typically like to use to identify
states that could be ignored, is not available. (Notice that modred itself can be used for unstable
plants; cf. [29].)

We obtain a reduced-order open-loop system by discretizing the population balance equa-
tion with only 250 spatial steps �L (as opposed to the 1000 spatial steps used for simula-
tions of the system). In addition, the corners of the functions h f and h p had to be mildly
smoothed using h p(L)=1+0.5R2(tanh(�(L −L p))− tanh(�(L p −L))) and h f (L , R1)= R1(0.5+
0.5tanh�(L f −L)), because otherwise spurious uncontrollable nodes were introduced in
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Figure 9. Control scheme for continuous crystallizer.
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Figure 10. MIMO study. Comparison between nonlinear and linear model in open
loop for �c f =0.01 and �R1 =0.1.

particular if L f or L p were part of the grid. Surprisingly, this is now where traditional synthesis
(like LQG or nominal H∞ synthesis) encounters its bottleneck. Even 250 states are still far beyond
the reach of current design techniques, at least in the MIMO case. Functions like hinfric,
hinflmi, h2syn or h2lqg certainly fail at state-space dimension 250, hinflmi already encoun-
ters difficulties at state dimension 50 (see [29] for these functions). Moreover, these tools provide
full order controllers only, which means that state dimension 50 is still far too big for a practical
design.

Now if we reduce the system further in order to comply with the limitations of existing
design techniques, let us say to state dimension 30, then we will be in trouble, because the
model will be very approximative, and the risk to fail to control or at least to degrade perfor-
mances will be high. What is worse is that even when this works at size 30, then we will
get a 30th order dynamic controller, which, on top of being hard to implement, will have bad
performance.

With structured H∞-control [1] we are no longer hampered by these considerations. We are
free to design a second-order locally optimal H∞ structured controller with two inputs and two
outputs from a version of (17), (18) discretized with 250 states. The bad reputation of the above
straightforward control strategy is undeserved. The failure is to be blamed on ARE-based design
techniques, which are not sufficiently flexible.
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Figure 11. Comparison of responses of structured H∞ controller (dashed curves) and time constrained
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controller less performing (bottom). The time response c̃(t) (bottom) has slightly longer rise time and
increased overshoot compared to the dotted line. The steady-state behaviour is still within the allowed

tube. Introducing the time constraints leads to a reduction of 30% for the maximum value c̃ f,max.

The scheme for the synthesis we have chosen is the traditional 1-DOF, see Figure 9. The refer-
ence signal is r = (�cref,�mref)∈R2. The control is u = (�c f ,�m)∈R2, based on the measured
output y = (�c,�m)∈R2. In order to enhance the robustness of the design, we have added
measurement noise 
c,
m and actuator noise 
c f , 
R1 , so altogether the exogenous input vector
is w= (r1,r2,
c,
m,
c f ,
R1 )∈R6. Controlled outputs concern the tracking error e=r − y ∈R2,
the output y and the control u and are of the form z = (Wee,Wuu)∈R4. The 2×2 filters are
chosen as

We =

⎡⎢⎢⎣
0.02

s+0.01
0

0
0.01

s+0.01

⎤⎥⎥⎦ , Wu =

⎡⎢⎢⎣
0.01s

s+0.01
0

0
0.01s

s+0.01

⎤⎥⎥⎦ ,

and the filter W2 =diag(0.01,0.01) is used at input 
e.
Finally, in order to study time domain constraints for a system of this size, a saturation constraint

on the control input c f (t) is included. As can be seen in Figure 11, this constraint is violated
by the structured H∞-controller, so program (8) is invoked with the H∞-norm as objective, time
domain constraints

(1−0.27)cfss�c̃ f (t)�(1+0.27)cfss, mol/l during 0�t�10 minutes

and

(1−0.12)css�c̃(t)�(1+0.12)css, mol/l for t�30 minutes

were introduced, and a closed-loop stability constraint ��−1e−7 was added.
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Figure 12. Continuous crystallizer. Open-loop poles top, closed-loop poles bottom.

In the SISO study we start with a second-order H∞ controller K1 with ‖Tc f →c(K1)‖∞ =1.5114.
The time domain constraints are not satisfied and constraint violation is 1.1308. Our algorithm
uses K1 as initial guess and computes a second-order controller K2 with ‖Tc f →c(K2)‖∞ =1.6080
and negligible constraint violation of 1e–3 in 411.984 s cpu. The non-smooth algorithm identifies
this as locally optimal within acceptable numerical precision, i.e. K2 ≈ K3. In phase 2 this study
incorporates 93 time domain constraints, where

cmax =cref +0.12�c, cmin =cref −0.12�c c f,max =cfss(1+0.27), c f,min =cfss(1−0.27).

This second-order controller is tested a posteriori by moving the system from a prior steady state
(c0,n0(L)) into the desired steady state (css,nss(L)) in order to increase crystal production. This
could be interpreted as a step response.

In the MIMO study the initial second-order H∞ controller K1 satisfies ‖T(c f ,R1)→(c,m)(K1)‖∞ =
1.6248 obtained in 691 s cpu (system with 250 states). This controller has maximum control
action R1 =56 and violates the saturation constraint R1�30. It is used as initial guess in phase 2.
Our algorithm finds a new second-order controller K2 with ‖T(c f ,R1)→(c,m)(K2)‖∞ =1.7543 and
constraint violation 4.22e–6 within 1975.6 s cpu. Phase 3 shows again optimality within an accept-
able numerical precision. This study incorporates 181 mathematical programming constraints,
which are ��−1e−3, 0�R1(t)�30, and

cmax =cref +0.15�c, cmin =cref −0.15�c, mmax =mref +0.15�m, mmin =mref −0.15�m.

A snapshot of the process can be seen in Figure 8 on the right, where the slurry rate m0(L)=
kv L3n0(L) of the old steady state is still visible along the t =0 axis, whereas the new steady-state
mss(L) can be recognized for later times t�5 h, where the cylindric form characterizing a stable
steady state is about to establish itself (Figure 8, right). Step responses are shown and compared
in Figures 13 and 14.
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Figure 13. MIMO study. Closed-loop controls c̃ f (t) and R̃1(t) for structured H∞ controller with and
without time constraints, linear and nonlinear. Inclusion of the time domain constraints leads to a 42.9%
reduction of the fines dissolution rate overshoot. Namely R1,ss =5, R̃1,max,constr =20, R̃1,max,unconstr =51,
meaning that the gap in the unconstrained case is reduced from |51−30|=21, to |21−30|=9. The

transient responses are also improved in the time constrained case.

11. CONCLUSION

We have introduced constrained structured H∞ synthesis, a set-up which allows to optimize
frequency domain and time domain performance specifications simultaneously in a single opti-
mization program. Expanding on non-smooth techniques developed earlier for structured H∞
synthesis [1, 30–33], we have proposed and validated a three-stage algorithm which combines
SQP techniques with non-smooth optimization. Our method finds solutions in surprisingly small
CPU times even for sizeable systems. Two benchmark examples have been tested and the results
corroborate that our method is more versatile than synthesis techniques based on algebraic Riccati
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Figure 14. MIMO study. Outputs c̃(t), and m̃(t) in closed loop with various controllers. With
time constraints the regulation error in c̃ is reduced from (4.1−4.096)/(4.1−4.092)=50% in
the unconstrained case down to (4.1−4.099)/(4.1−4.092)=12.5% after adding constraints.

The transient responses are also improved.

equations or matrix inequalities. In particular, our approach makes the H∞ control paradigm open
to arbitrary controller structures and time domain specifications.
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