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Abstract: Control of a magnetic bearing device is addressed by parameter varying control. We compare linearly inter-
polated controllers and a switching strategy with and without hysteresis. Piecewise LPV controllers are found
to be an interesting alternative.

1 INTRODUCTION

Magnetic bearings (MB) increasingly become the
choice for high-speed, high-performance rotating ma-
chinery because of their frictionless characteristics.
They utilize a magnetic field generated by radially or
axially placed electromagnets to generate the forces
necessary to suspend and support a shaft without any
contact with its environment. Thus, magnetic bear-
ings are particularly useful in very high or very low
temperature conditions where a lubrication-free en-
vironment is necessary. The advantages of magnetic
bearings are primarily their very low power consump-
tion and their very long maintenance-free life. Some
applications where magnetic bearings offer distinct
advantages are high speed turbo machinery, precision
milling spindles, and combined attitude control and
energy storage for spacecraft and satellites. A dis-
advantage of magnetic bearings is that they require
continuous power input and active control to hold the
load stable.

Active magnetic bearings (AMB) can support ro-
tors without friction but require a sophisticated con-
trol system because specific performance require-
ments such as automatic balancing of the shaft, re-
jection of unwanted disturbances and vibration isola-
tion are required. Many of the controllers proposed
assume a linear time-invariant model, an assumption
which is no longer accurate when the rotational speed
varies.

Control techniques from linear robust control

(Mohamed and Busch-Vishniac, 1995), H∞ loop
shaping and µ synthesis (Lanzon and Tsiotras, 2005)
as well as adaptive control methods have been used
to attack this problem. Robust control is often overly
conservative as it fails to account for the actual time
variation of the rotor speed, which in addition is mea-
surable.

Another approach is gain-scheduled H∞ con-
trollers for linear parameter varying (LPV) systems
based on LMI techniques (Tsiotras and Mason, 1996;
Packard, 1994; Apkarian and Gahinet, 1996; Apkar-
ian et al., 1995). Here the idea is to solve a series
of standard H∞ problems at a pre-specified number of
operating speeds. Using a single Lyapunov function
to show stability and finite L2-gain at these selected
points, one guarantees that these properties will also
hold for all operating speeds which are linear combi-
nations of the selected speeds (interpolation). Unfor-
tunately, this strategy is only valid if the controller is
of the same order that system, and due to the choice
of a single Lyapunov functions also tends to be con-
servative. In AMB systems there is strong interest to
use small order controllers or other simple structures
like PID.

High rotor speeds are gaining importance, and
the fast sampling rate necessary for these MB sys-
tems makes the application of digital control a diffi-
cult task. Fast sampling rates call for simplification of
feedback matrices in control design. In order to com-
ply with the demand for simplicity, our present study
uses PID controllers.



PID are still the controllers of choice due to con-
solidated hardware and software tools for design and
hardware embedding, and the implication that more
complex controllers may have. The drawback of PIDs
in scheduling may be a significant lost of perfor-
mance, and sometimes even worse, loss of internal
stability. Here we present a new method to design
scheduled PIDs for a parameter varying MB system,
which allows to avoid these fallacies.

The paper is organized as follows. Section 2 rep-
resents the open-loop MB system. In section 3 the H∞

performance channel is discussed, and section 4 gives
the state-space form of the decentralized PID. Section
5 explains the role of the reference curve K∗(p) and
explains the rationale of the robustification method.
Re-centralizing plant and controller models of MB are
explained in sections 5.1 and 5.2 and are needed to
apply the LPV procedure in sections 6 and 7. This
is carried out in section 7 by solving a mixed H∞/H∞

program (11) based on the semi-structured stability
radius (see (D. Hinrichsen, 1986a; D. Hinrichsen,
1986b; M. Karow, 2010; Lawrence et al., 2000)). Ex-
perimental results are presented in section 8.
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Figure 1: Left image, (a), shows the magnetic bearing con-
figuration with magnetic forces Fr1, . . . ,Fr4, Fl1, . . . ,Fl4 ac-
cording to (R.D. Smith, 1995). Right image, (b), shows the
rotor unbalance. The purpose of unbalance compensation is
to drive the displacements x1 = Lθ and x2 = Lψ to 0.

2 OPEN LOOP

The open-loop magnetic bearing system has the fol-
lowing parameter dependent form

ẋmb = Amb(p)xmb + Bmbu
y = Cmbxmb + w (1)

where xmb ∈R6, while w,u,y∈R2 and the state-space
matrices are given by:

Amb(p) =


0 0 1 0 0 0
0 0 0 −1 0 0

−4c2
m 0 0 −pJα

Jr

2c1
m 0

0 −4c2
m

pJα

Jr
0 0 2c1

m
2d2
N 0 0 0 −2d1

N 0
0 2d2

N 0 0 0 −2d1
N

 ,

Bmb =
1
N

[
04×2

I2

]
, Cmb = [I2 02×4]

with parameters gathered in Table 1. The exoge-
nous input w = [w1, w2]T is a sinusoidal sensor dis-
turbance of the form w1 = d̃e−φt cos(pt +η) and w2 =
d̃e−φt sin(pt +η), which models the unbalance of the
bearing. Here d̃ is the magnitude of the unbalance
and η corresponds to un unknown initial phase angle.
The varying parameter p represents the rotor veloc-
ity, which is measured on-line and varies in the range
p∈Π := [315,1100] rad/s. One can represent the sen-
sor disturbance by the following state space represen-
tation:

ẋdist = Adist(p)xdist + Bdistd̃
w = Cdistxdist

(2)

where

Adist(p) =
[
−2φ −p

p 0

]
, Bdist =

[
1
0

]
, Cdist = I2,

and φ = 0.05. The system is therefore described by
the joint system state xsys = [xmb, xdist]T with dynam-
ics

ẋsys = Asys(p)xsys +B1sysd̃ +B2sysu
y = Csysxsys

(3)

where Asys(p) = diag(Amb(p),Adist(p)) ∈ R8×8,
B1sys = [06×1, Bdist]T , B2sys = [Bmb, 02×2], Csys =
[Cmb, Cdist]. For more explication on system modeling
see (Lanzon and Tsiotras, 2005), (Tsiotras and Ma-
son, 1996) and (R.D. Smith, 1995). In the latter ref-
erence a more complete model is presented, in which
p is one of the states. This means that we expect p to
vary continuously in time.

3 PERFORMANCE INDEX

In our next step we have to define controlled outputs
z ∈ R4 to assess the system performance. We use
the control configuration shown in Figure 2. Follow-
ing (Tsiotras and Mason, 1996), the controlled out-
put z regroups u and y with appropriate frequency
weighing filters: Wu = diag(Wu1,Wu2) with Wu1 =



c1 1.9715e5 Wb N 400
c2 325.047 Wb2/m Jα 0.0136Kg.m2

d1 2.1001e4 Ω.Wb/H.m Jr 0.333Kg.m2

d2 7.9804e3 Ω.Wb/H.m m 19.7041Kg

Table 1: System constants

Wu2 = 0.01 (s+1500)2

(s+10000)2 and Wy = diag(0.5,0.5) which

up to a factor 10−4 are as in (Tsiotras and Mason,
1996). Altogether this adds 4 states to the 8 states
of the open loop system. We add a reference signal
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Figure 2: Block diagram of H∞ system.

r ∈ R2 for y to the exogenous inputs, which leads to
w = (r1,r2, d̃) ∈ R3. Altogether we obtain a parame-
ter varying LFT of the form

P(p) :

 ẋ
zper
y

 =

 A(p) B1 B2
C1 D11 D12
C2 D21 0

 x
wper

u


with dimensions x ∈ R12, zper ∈ R4, y ∈ R2, wper ∈
R3 and u ∈ R2. We shall refer to wper → zper as the
performance channel.

4 CONTROLLER
PARAMETRIZATION

In this study we design a decentralized PID controller
which depends on the scheduling parameter p. A
state-space representation is of the form

K(p) =


0 0 0 0 ri(p) 0
0 τ(p) 0 0 rd(p) 0
0 0 0 0 0 r′i(p)
0 0 0 τ′(p) 0 r′d(p)
1 1 0 0 d(p) 0
0 0 1 1 0 d′(p)

 (4)

with 8 scheduling functions ri(p), . . . ,r′d(p) to be de-
termined. If we assume an affine parametrization,
then we have 16 free parameters to determine.

5 RATIONALE

For every parameter value p we consider the H∞-
synthesis problem

minimize ‖Twper→zper (P(p),K)‖∞

subject to K has decentralized PID structure (4)
K stabilizes P(p) internally

(5)

Let K∗(p) be the solution of (5), which we compute
by the Matlab function hinfstruct. This furnishes 8
optimal parameter values r∗i (p), . . . ,d′∗(p). The curve
p 7→ ‖Twper→zper (P(p),K∗(p))‖∞ =: P ∗(p) gives the
best possible H∞ performance plotted over the inter-
val p ∈ Π = [315,1100]. Clearly the parametrization
p 7→ K∗(p) is not practical, and we need approxima-
tions of the mapping K∗(·) which can be stored conve-
niently. This leads to a trade-off between the quantity
to be stored and the unavoidable loss of performance.
In order to control the loss of performance we adopt
the following convention. Fixing α > 0, we call a
parametrization p 7→ K(p) acceptable, if

(i) K(p) has structure (4),

(ii) K(p) stabilizes P(p) internally for every p, and

(iii) ‖Twper→zper (P(p),K(p))‖∞ ≤
(1+α)‖Twper→zper (P(p),K∗(p))‖∞ for every p.

To get a scheduling function K(·) which needs as
few elements to store (to embed) as possible, we dis-
cuss two approaches, which use either interpolation,
or switching. For switching we identify subintervals
I = [p1, p2]⊂Π as large as possible on which we can
represent K(p) as an affine function without violat-
ing criteria (i) - (iii). Then we cover Π with as few
as possible of these subintervals I1, . . . ,IN . The rule
to control P(p) is then by switching between these Ii.
The way to construct I together with an affine repre-
sentation K(p) valid on I is given in the next section.
A variation which uses interpolation is given in sec-
tion 8.

Remark. We recall that condition (ii) is only neces-
sary but not sufficient for stability of the switched or
interpolated closed loop system. In general it is dif-
ficult to prove stability over the parameter domain if
nothing is known about the parameter trajectory p(t).
Sufficient conditions based on prior bounds |ṗ(t)| ≤ ν

can be stated, but are generally hard to establish due



to the inherent conservatism. In the same vein, con-
dition (iii) should be understood as a worst case point
of view. Namely, unlike in chess where it would be
enough to know the best move K∗(p) in any given
position p, the situation here is more complicated, be-
cause the payoff may be different in different param-
eter regions, and the seemingly ”best” move K∗(p) at
p might lead to an unfortunate parameter trajectory in
the future. (A similar situation would arise in chess as
soon as e.g. winning with more material on the board
would count more than winning with few pieces left.
The notion of a ”best” move would then have to be
re-defined).

5.1 LPV model of Magnetic Bearing

For fixed p0 ∈ Π we wish to find an interval I (p0)
containing p0 as large as possible such that we have
a simple controller parametrization K(p) valid in the
sense of (i) – (iii) on I (p0). In order to construct these
intervals, it is helpful to change the parametrization
and write p = p0(1+δ). The new parameter δ is now
centered at 0 and more symmetric, |δ| ≤ r, and we
wish to have a range of validity r as large as possible.
We re-write the open-loop system accordingly. For
example, for the third state in (3) we have

ẋ3 = −4c2
m x1− pJα

Jr
x4 + 2c1

m x5

= −4c2
m x1− (p0(1+δ))Jα

Jr
x4 + 2c1

m x5.

Introducing an auxiliary input wrob,1 and output zrob,1

via wrob,1 =− Jα

Jr
p0 x4 and zrob,1 = δ ·wrob,1, we obtain

ẋ3 = −4c2
m x1− p0Jα

Jr
x4 + 2c1

m x5 + zrob,1.

Repeating the same thing for all states leads to a stan-
dard representation of P(p), p = p0(1+δ), as an un-
certain system:

[
ẋ

zrob1
y

]
= (6)

[
Asys(p0) B B1,sys B2,sys

C 0 0 0
C2,sys 0 0 0

] x
wrob1

d̃
u



where zrob1 ∈ R4, wrob1 ∈ R4, wrob1 = ∆1zrob1 with
∆1 = δ I4 and:

B =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


,

C =

 0 0 0 −Jα

Jr
0 0 0 0

0 0 Jα

Jr
0 0 0 0 0

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0

× p0.

5.2 LPV model of decentralized PID
controller

We repeat the same procedure for the controller
parametrization (4). We write each of the 8 schedul-
ing functions as ri(p) = ri0 + δ · ri1, and so on until
d′(p) = d′0 + δ · d′1, with 16 parameters ri0, . . . ,d′1 to
be determined for each I (p0). Notice that ri0 = ri(p0)
depends on the choice of p0, and similarly for the
other scheduling functions. It is helpful to denote
this controller as K(p0,δ) = K(p0)+δ ·dK(p0), even
though it still has the form (4).

Having symmetrized the parameter, we get a simi-
lar uncertain block ∆2 = δ · I8 with δ repeated 8 times,
4 times for each PID. Altogether this leads to the
scheduled controller structure shown in Figure 3.



ξ̇1
ξ̇2
zk
1

zk
2

zk
3

zk
4
u


=


0 0 1 0 0 0 ri0
0 −τ0 0 1 1 0 rd0
0 0 0 0 0 0 ri1
0 −τ1 0 0 0 0 0
0 0 0 0 0 0 rd1
0 0 0 0 0 0 d1
1 1 0 0 0 1 d0





ξ1
ξ2
wk

1
wk

2
wk

3
wk

4
y

 , (7)

where ∆21 = δ · I4. We get a similar block for the sec-
ond PID with primed parameters in (4). This leads to
wrob2 = ∆2zrob2 where ∆2 = diag(∆21,∆22) = δI8 for
K. We then apply a standard procedure to the whole
LFT which gives us what is on the right of figure 3.
The controller is now independent of δ and gathers the
16 unknown coefficients of the scheduling functions,
or rather, the free parameters in (4). The uncertain
block is of size ∆ = diag(∆1,∆2) = δ · I12.



6 ROBUSTNESS INDEX

The constellation on the right of Figure 3 corresponds
to the LFT

Prob(p0) :

[
ẋ

zrob
y

]
=

[
A(p0) B0 B2

C0 D00 D02
C2 D20 0

][
x

wrob
u

]
, (8)

wrob = ∆zrob, u = K̃(p0)y. (9)

The matrix dimensions are K̃(p0) ∈ R14×14, A(p0) ∈
R12×12, ∆∈R12×12, etc. Notice that K̃(p0) carries the
same information as in K(p0,δ) = K(p0)+δ ·dK(p0),
that is, it regroups the 16 unknown coefficients of
K(p0) and dK(p0) which we want to compute. This
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Figure 3: LFT scheme

is now a known situation in robust respectively LPV
control. If K in (7) was not structured, we could
for instance use mu-tools to design full-order para-
metric robust controller of size 14×14 which makes
the interval of robustness |δ| ≤ r as large as possible.
Similarly, the LPV procedure of Scherer (Scherer,
2003) would lead to a full order solution. The neces-
sity to satisfy the structural constraint (7) complicates
matters, and we have to take recourse to a heuristic
method.

We concentrate on stabilizing K(p,δ) respectively
K̃(p) on as large an interval I (p) as possible, so
we consider (8) without performance channel. The
closed-loop system matrix is then

A(K̃,δ) = A+B2K̃C2 +(B0 +B2K̃D20)∆× . . .

×(I−D00∆−D02K̃D20∆)−1(C0 +D02K̃C2) (10)

which we re-write as

A(K̃,δ) = Ã+ B̃∆(I− D̃∆)−1C̃

with Ã = A + B2K̃C2, etc. Our goal is to guarantee
stability of this matrix for as large a range |δ| ≤ r as
possible. We interprete (10) as the semi-structured

complex stability radius rC(A + B2K̃C2) of the nom-
inal closed-loop matrix Ã = A + B2K̃C2. It is well-
known that

r−1
C (Ã) =

∥∥C̃(sI− Ã)−1B̃+ D̃
∥∥

∞
,

so that computing the stability radius of A + B2K̃C2
amounts to computing an H∞-norm. Altogether, we
have

r−1
C (Ã) = ‖Twrob→zrob(Prob, K̃)‖∞,

where Prob is the plant in (8).

7 OPTIMIZATION PROGRAM

For every fixed p0 we now compute the solution
Krob(p0) of the following mixed H∞/H∞ optimization
program:

minimize R (K) = ‖Twrob→zrob(Prob, K̃)‖∞

subject to P (K) = ‖Twper→zper(P(p0),K)‖∞

≤ (1+β)P ∗(p0)
K has structure (4)
K stabilizes internally

(11)

where P ∗(p0) is the nominal performance at p0, that
is, P ∗(p0) = ‖Twper→zper(P(p0),K∗(p0))‖∞. This pro-
gram presents a trade-off between performance and
robustness in the sense of rC. Namely, as we know,
the best possible performance at p0 is obtained by
K∗(p0), which corresponds to choosing ri0 = r∗i (p0),
etc. and δ = 0. In (11) we accept a loss of 100 ·β%
performance over the nominal value P ∗(p0) and use
this freedom to buy some additional robustness in the
sense of rC, hoping that this will lead to a controller
Krob(p0) with as large an interval of validity I (p0)
as possible. Clearly, in order to respect rule (iii), be
have to choose β < α, and in our experiments we use
β = α/2.

The gain scheduling function is now as follows.
Let ν(p) be such that p ∈ I (pν) and define the con-
trol law as K(p) = Krob(pν(p)). If there are several ν

with p ∈ I (pν), then we use the hysteresis rule. That
is, we stay on the interval in which we are, and only
jump on a new one when we reach the boundary of the
first one. This means that for a value p in the inter-
section I (pν)∩ I (pµ) the actual control law changes
depending whether we arrive from the right or from
the left.

8 EXPERIMENTAL RESULTS

The measured parameter p varies in Π =
[315, 1100]rad/sec. We use hinfstruct at 51



Algorithm 1 . Algorithm to compute parametrized
PID with switching

Parameters: α > 0, 0 < β < α.
1: Pre-compute approximation of optimal curve

K∗(p) using hinfstruct.
2: For a sufficient number of parameters p solve

mixed H∞/H∞ program (11). The solution curve
is Krob(p).

3: For every p find interval of validity I (p) of
Krob(p) using conditions (i) – (iii).

4: Remove a small portion on each side of I (p) and
call the shrunk interval I ](p).

5: Select minimum number of I ](pν), ν = 1, . . . ,N,
covering Π. This means the intervals I (pν) cover
Π with some slight overlap.
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Figure 4: Interpolating linearly between the two controllers
K∗(315) and K∗(1100) (dashed line) fails due to a loss of
stability, while switching using Krob(315) and Krob(1100)
holds the stability (solid line).

equidistant points in Π to compute the optimal
decentralized PID controller curve K∗(p).

For each of the 51 values p0 we use program (11)
with β = α/2 to compute 51 controllers Krob(p), sat-
isfying (i) – (iii) in tandem with their intervals of va-
lidity I (p).
First study:
Our first test uses α = 0.38 which allows to cover Π

with only two intervals I (315) and I (1100). As one
can see in Figure 4, the switched controller (contin-
uous line) maintains stability over the entire Π, but
interpolating K∗(315) and K∗(1100)leads to a loss of
stability (broken line). This indicates that interpola-
tion of controllers is more delicate to arrange for than
switching.
Second study:
Our second test uses α = 0.1, which leads to more
realistic results. We seek a switching controller and
compute intervals I (p) according to algorithm 1 for
51 equidistant values p ∈ Π.

Figure 5 (a) shows the validity region for each of
the 51 controllers Krob(p), that is, the values p′ for
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Figure 5: (a) and (c): Validity regions I (p) plotted against
p. This allows to read off the intervals needed to cover Π.
(b) and (d) the final performance obtained for each case.
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Figure 6: By upwards interpolation, (a), we need 3 con-
trollers to cover Π and by downwards interpolation, (b), we
need 10. Thin lines shows bisection procedure and thick
line the final performance.

which controller K(p) satisfies (i) – (iii). For each
of the 51 controllers Krob(p) the zone where (i) –
(iii) hold corresponds to a horizontal array marked
by ∗. As can be seen, by following the thick line,
we can find a way covering all the variation of p.
This requires only two controllers Krob(707.5) and
Krob(1084.3) with switching at p = 723.2rad/s (con-
trollers number 26 and 50).

If we insist on a non-negligible overlap between
the intervals I (p), using the I ](p) as in the algorithm,
then Figure 5 (c) shows that we need three controllers
Krob(707.5), Krob(801.7) and Krob(1084.3), to cover
Π (controllers number 26, 32 and 50). The same Fig-
ures 5 (b) and (d) show the performance obtained in
each case.

Third study:
Our third test still uses α = 0.1, but now we interpo-
late optimal controllers K∗(p). Start at the left end



p1 = 315. Having found pk, we examine for p > pk
the closed-loop performance curve obtained by the
controller Kint(pk, p) interpolating between K∗(pk)
and K∗(p). As p increases, this curve eventually hits
the upper limit curve (1+α)P (K∗(p′)) at some p′ be-
tween pk and p. We put pk+1 = p and continue until
the right end point is reached. A similar procedure
starts at the right end point and moves downward.

Figure 6 gives the results of this algorithm in
our study. Upwards interpolation needs 3 con-
trollers K∗(p) at p = 315, 903.75, 1100, while down-
wards interpolation requires more, namely K∗(p)
at p = 1100,1037.7,931.7,892.2,817.9,790.9,707.5,
644.65,315.
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Figure 7: Simulation in closed loop. The scheduled pa-
rameter increases within 1.2 sec from 720 to 780, and de-
creases back to 710 within another 1.5 sec. Three con-
trollers Krob(p(t)) are called for. Upper image shows
unbalance compensation x1,x2 for simulated w2(t) =
(1.3e−5sin p(t),1.3e−5cos p(t)). (For x1,x2,w2 see sec-
tion 2).

9 CONCLUSION

Several methods to compute a parameter varying de-
centralized PID for a magnetic bearing device were
compared. Performance was measured in the H∞

norm, and the curve K∗(p) of optimal H∞-controllers
was taken as a reference to assess the performance
of the different parameterizations K(p). If parame-
terizations K(p) with a maximum loss of 10% over
K∗(p) were allowed, switching between piecewise
affine controllers on subintervals was found to per-
form best, but needs solving a mixed H∞/H∞ synthe-
sis program. Interpolation based on computing vari-

ous K∗(p) was an interesting alternative, even though
it was observed that interpolation seems to have a
stronger tendency to lose stability and important de-
pendence at the beginning point. While the switching
technique carries over to 2D parameter sets, there is
no obvious way to extend interpolation into two di-
mensions.
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