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ing Function, Stick and Slip Friction. the friction parameters of system. Canudas in [6] uses [iescr
ing Function (DF) to analysis the same problem. This paper is
Abstract inspired from [6] but the Karnopp model is used to character-

ize friction. Karnopp model allows to explain the discomiiy
An essential problem concerning friction compensatiowes-o 0f static to Coulomb friction force at the neighborhood bdun
compensation or under-compensation. In model-based cafy of zero velocity [7]. In this case, the DF of the both of
pensation for friction, these events are due to over-etitima the friction model and its compensator is a complex imaginar
or under-estimation of the model parameters. While gelyeraiunction of limit cycle amplitude and frequenéy
under estimation results in steady state errors, over astirin this complicated case, one can use a gaimultiplying the
tion may produce oscillations and instability. In this page predicted friction before applying to the system. This gairst
simple servo-mechanism where the friction part is modeled be reduced when the effects of the over-compensation k@scil
Karnopp model is treated. A controller able to cope with ¢heg§ions) appear and increased when the steady state erroodue t
problems is proposed. Using describing function analysss tunder-compensation appears. As an exact relation between t
new design is studied. gain,g, and the compensation error can not be found generally,
the system needs a permanent supervision.
The robust design contains a paramétetich can be adjusted
according to the case of the maximum over-compensation and

Friction as a nonlinearity which is present in all machinébw then remains constant. In addition, the values of the compen
motor part, has received much attention. This is due to fator parameters are chosen as the maximum values that the
many undesirable effects like power dissipation, osédfaand Model parameters can have. Thus, friction is always overcom
steady state errors. In [1] a detailed discussion on frictioPensated. However, it is shown that in this approach, the ste
its analysis tools and the different methods for its compengesponse of the system does not change significantly evies if t
tion are given and the compensation methods are classifiedri#€ friction parameters change in a large domain. Alsoit lim
two main groups: model-based and non-model-based. In nécle amplitude is negligible.

model-based approaches, no friction model is used and-geridie paper is organized as follows: in sectirKarnopp model
ally compensation is performed by changing the paramefersd its proposed compensator are presented. SeRtiurs-

the controller, for example the gain in the stiff PD [2] andlie trates two different designs to cope with over-compensatio
integral controller [9], or the pulse width in impulsive dosi and under-compensation. The simulation results are piesen
[3]. in section4. The DF computation of both of the Karnopp
In the model-based compensation [5], one uses a frictioremofnodel and its compensator is done in Appendix.

so that it is possible to compensate for friction by applyang

command equal to the predicted force or torque and opposte Karnopp model and its compensator

to the friction force or torque.

The model parameters can be identified off-line or onJnlike many friction models that have velocity as input and
line. However, the risk of over-compensation or undepredicted friction as output, the input and output of Kaimop
compensation, due to bad parameters estimation, always @odel are respectively the applied force and the prediated v
ists. Thus, in the model-based compensation, the over (or ig¢city. parameters aref.. (Coulomb friction), Fy (maximum
der) friction compensation must always be considered. Gegfiction friction),dv (limited velocity in stick-slip region) and
erally, under-compensation results in steady state ernilew m (the mass of the moving part). The other symbols &igt)
over-compensation produces the oscillation. (applied force) F; (t) (friction force) andy(t) ( velocity).

In this paper, it is supposed that the parameters of a good f\Vheny(t) enters in the interval—dv, dv], the model output
tion model are identified off-line using an exciting inputen,

a robust controller design is presented. This design ptsven Zin [6] it has been shown that this DF always remains on theaxial

1 Introduction
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Figure 2: Block diagram of a simple servo-mechanism, the
controllers and friction compensator.

Figure 1: Block diagram of Karnopp model ) )
very quickly. We propose the following compensator:

is(t) = 0, the stick period begins and continues until the in- 1y _ { Fesign(§(D)  [§()] > dv 4y
stantt;, when a slip period begins. The instantsatisfies the Fy.sign(Fe(t)) |y(t)] < dv
following equality:
To study the influence of incorrect compensation, threescase
t re considered:
% () = Fiesign(F. ()it = 2.dv.sign(F(6) @) are considered
’ e exact compensatioh, = F., F, = F, anddv = dv,
In this relation  is either the first instant whek, (¢) is equal . .
to F, andF,(t) > 0 or the first instant whed, (¢) is equal ~ ® Over-compensatioh, = F.(1 + %n.), Fs = Fs(1+
to —F, andF,(to) < 0. t, represents the beginning of the slip ~ %n), anddv = dv.
period. During the slip period (> ¢1), g(t) is the solution of

the following differential equation: » under-compensatiofi, = F(1 — %n.), Fy = Fi(1 -

%ons), anddv = dv.
m.jj(t) + Fe.sign(y(t)) = Fe(t), 9(t1) = dv.sign(y(t)) , , _
() In these relation§on,. and %ns present the maximum devia-
However as soon as the solution of this differential equatiéon in F. andF;.
re-enters in the limited boundary at= t» (i.e. |y(t2)| < dv
), the slip period finishes. Note that according to the aboge Two designs to cope with incorrect compensa-
discussion and figure (1)1 < t < t2) = (|y(t)| > dv). tion
In short the estimated frictiorF ' (¢), will be:
Figure(2) shows a simple servo-mechanism with two con-

o F(t) ,if|F.(t)] < E, and|j(t)] < dv, trollersCy = 3, C; = 3. Friction which is modeled by
Karnopp model and the compensator are also marked. gain
o F,.sign(F.(t)),if |F.(t)] > F, and|y(t)| < dv, must be regulated or constafat = 1), corresponding to two
. . designs that are discussed.
o F..sign(y(t)) ,if |g(t)] > dv. The controllers”; andCy; must be designed to accomplish the
desired closed loop transfer function :
F,, F, anddv must be found using an identification process (wn)?

as in [8]. H(s) =
Always friction compensator is considered as a block with

velocity y(t) as input and estimated frictiof..., = Fy  To find the controllers, always it is assumed that compenisati
as output. During the slip periog$y(t)| > dv), friction s perfect (or friction does not exist).

can be compensated B.,,,, = Fe.sign(j(t)). However, To examine the robustness, DF analysis is used to show
during stick periods,|j(t)] < dv, friction compensation how limit cycle amplitudea is changed if friction is over-
depends upotf, (t). To avoid precise measuring &% (¢), itis compensated. Transfer function of linear part is named by
supposed that during stick periods, ., = Fy.sign(F,(t)). G(jw)and DF of non-linear part b (a, w). Frequency and
This compensation increasds (t) in the correct direction amplitudeqa of limit cycles must be hold it# (jw).N (a,w) =
(|F.(t) + Fs.sign(F.(t))| > F), so that the stiction finishes—1. Also, the limit cycles specifications can be estimated by

52 + 2.6.wp.5 + (wp)? “)



founding the intersections of the Nyquist diagrams&ffiw)
andN(a,w).
For system presented in figure (2):

Gjw) = 5% (®) — B0 +—

- j.w.B1 .B2

N(aa w) = Nfriction (aa w) - g-Ncompensator (aa w) (6)

3.1 Firstdesign: design with variable compensator gain Figure 3: Block diagram of the second design.

Gain g at the output of the compensator is tuned in order fﬁ’
- . . h her w m large.
eliminate the effects of the over-estimation or of the under the other wayk must be large

estimation DF analysis
The most simple controllers can bed; = m.w?2, A4y = In this design: Gljw) = kb = ka2 (11)
ffgs + 1andB; = B> = 1, which is a PD controller. Jw) =Fk.b=Fk.wn
Df analysis ConsideringN (a,w) = Re(N(a,w)) + j.Im(N(a,w)), the
In this case, limit cycle conditionG(jw).N(a,w) = —1 will be:
(wp)?.j k.w ?.(Re(N(a, i.Im(N(a, =-1 12
Gjw) = 2mawn & — % @) w,.(Re(N(a,w)) + j.Im(N(a,w))) (12)

In this case, each limit cycliecorresponds tdm (N (a;,w;)) =
Obylously, it is not p_ossuble t_o mo<_j|fy the Nqust diagraf o, and Re(N (a;,w;)) = _%_ Knowing that DF analysis im-
G(jw) to avoid the intersection withV (a, w) without affect- plies some approximation, one can expect that chodsing],
ing the desired transfer functidi(s). Therefore, to avoid the 1, rea| and imaginary parts, must have small values at limi
intersections, gaip in equation (6) must be regulated. cyclei which implies that the amplitude of oscillation;] is
small. This phenomena can be explained as following:
3.2 Second design: controller design In the case of over-compensatiaf, (t) = u(t) + Fs.(1 +
n%)sign(u) (see figure (2) overcomdd quickly, hencew.t;
is very small. Assumingy.t; = 0 and ignoring the small val-
ueddw, it can be shown that (see Appendix):

In this design the compensator gajs constanyy = 1. The
final objective in the new design is to reduce oscillation Bmp
tude by modifyingG(jw) and in the same time, do not influ-

encingH (s). v w.ity = i(l — cos(w.t2)) (13)
It is supposed thatH, (s) = Rgg = rm R = F.
F(k,s).H(s). The proposed solution is: In addition:
A1 =Ks, Bi=s"+2wns+w, ) Im(N(a,w)) = g Wh) = g (sin(2wts) + 2-sin(wh)
Ay = b.(s% + 2w,.5 +W?2), By =1 (9) +2E (wtysin(wtz) — 1 + cos(wtz)) = 0 (14)
This results in:
i Re(N(a,w)) = —5—(cos(2wty) — 1) — 2= (1 — cos(wtz))
H(s) = H(s) (10) (=2 + cos(wt2)) = 0 (15)

(ms + kb).w?’
One understands that df.t, becomes very smalle. if slip
eriod finishes more fast, the values of the real and imag-
nary parts will also be small. However, according to the
equation(13), ifF, is constantwt, diminution is equivalent

Evidently the pole at = —% must be stable, thukb > 0.
Moreover, in order to obtain a steady state gain equal toon
has to satisfyy = w,, 2, hencek > 0.

g _ A Bs+C
H,(s) can be exteznded asti(s) = 5w + s en, 5707 with o diminution or equivalent with better friction compen-
— — — =1 H
whereA = m, B = mmg’w”ﬂ andC = b~". sation.

The coefficientsd and B decrease with increasirigthen the To find a constant value fdr: three different cases are studied:
transient response improves. To find the realization ofrthig

controller,Y (s) can be rewritten as: e F. = F,, andk = k; which providea = a; and
Y(s) = sk Ri(s) whereR, (s) = % N

(aaw) = Nl((l,(U)-
The new controller consists of a filter on the position reflees 7 _ F.,, whereF,, > F., andk = k, which provide
and a de_r|vat|on action on the filtered position error as @an b a = as andN (a,w) = Na(a,w).

seen in figure (3).

Note that in order that the position(¢)) is similar to the refer- e F. = F.;, whereF.; = F,,, andk = k, wherek, > k;
ence ¢1(t)), the relations = =£2 « —1 must be satisfied or which provides = a3 andN(a,w) = N3(a,w).
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Figure 4: First designg( = 1), desired response (solid line), Figure 5: Real and estimated friction
over friction compensation (dotted line) and under friatio
compensation (dashed line).
( Ff found by equation(3)). As can be seen, they are nearly
same.
ThereF.; = F — F.. Suppose that in the case Bf = F..,, First design
];_ k1 Q%Odurr:]em = o Whe_lr_ﬁal is suﬂ‘lmentlyr/] smaIIh It figure (4), solid line, represents both of the desired step
c2 = 2Fc1, thenay > ay e experience shows that to sponse and the actual one obtained using exact compensation
obtainas acceptableks ~ 2k; which is logically correct.e. (F. =6 N, F, = 25 N anddv = 0.02 m) " The two curves

If k1 is able to reduce the oscillation amplitude fr = Fe1, 510 4 ¢lose that the difference can not be distinguishelusin t
2k, will be able to do the same fd? = 2F., and this is may figure.

be due to the linearity oV (.) in To examine the robustness of this design, assuming that the
Based on these discussions, the procedure is as follows: ~ compensator parameters are the same two cases will be con-
sider:

e Identify Karnopp model parametefs. , F., dv;.

. . - o over-compensatiof,; =4, Fs; = 16.7 anddv = 0.02.
e consider a maximum for friction parameters deviations * P el Pt v

n%.

A . . e under-compensatiafi., = 8, Fs, = 33.3anddv = 0.02

e chooseF,, F; anddv in equation (3) ag,, (1 +n%) and
Fycomp = Fs; (1 +n%) anddv = dv;. o . S

which is equivalent ta:30% deviation with respect to the val-

¢ find a value oft which decreases considerably the oscilies used in the compensator. Figure (4) presents the escilla
lation amplitude. Name it; . tions and the steady state error appeared due to applyisg thi

compensator fof,,, Fs;; andF.,, Fs,. To eliminate these

effects, the gairy must be decreased tp= .66 for the first

case and increased o= 1.3 for the second case. Thus the

Remark: It can be noticed that only one tuning parameter gaing must always be tuned.

is necessary for friction compensation. In addition, th@ea Second design

value of deviation forF, andF, has been used. However, aconsidering the same desired valgeandw, and the same

previously mentioned) (a,w) is more sensitive to the devia-values for Karnopp model as in the last example the bloc dia-

tion in F;, than to the deviation i’y and as we have checkedgram Fig.(3) is simulated. Figure 6, illustrates the perfance

e choosek = 2k;.

in simulation, the deviation i; can be much greater. of this new design wheh = 150 and friction is exactly com-
pensatedf. = 6 N, Fs; =25 N anddv = 0.02 =).
4 Simulation experiences To find k1, it is supposed thab% = 30, then considering

FC = 8 and F; = 33.3, k is increased to obtain an accept-
The desired step response characteristics are chosgén=as able oscillation. Figure (7( presents the system respoiitbe w
5, wy = 2 %’ and Karnopp model parameters Bs = &k = 180, 250, 750 and also the desired response. Accepting
25N, F. =6 N, dv=.02 %, m=2kg. the response correspondinghto = 750 (a = .022) , we con-
To examine the capability of the compensator presentedsider the constant value &f= 2 x k; = 1500 as explained in
Eq.(3), the case of exact compensatlﬁp(: 6 N, F,=25N the procedure. As figure (8) illustrates, the step responige
anddv = 0.02 ™) are tested in the first design. Figure (5) ilsponding toF. = 4 andF; = 16.7, is always acceptable, even
lustrates the real frictionH; in figure (1)) and its estimation with nearly2 x 30% over-compensatioru(= .04).



5
Time (second)

5 Conclusion

In this paper considering a simple servo mechanism, the
problem of over-compensation or under-compensation when
model-based compensation is used, is treated. Karnopplmode
is used to characterize friction. The main advantage of &gaypn
model is its capability to shows stick-slip effect of frimti. Two
designs to cope with incorrect compensation are presented.

first one uses a gaip for friction compensator. This gain
must be increased to eliminate steady state error due ta-unde
compensation or it must be increased to eliminate osahati
due to over-compensation. In the second design, we have cho-
sen the values of the compensator parameters (Coulomb and
stick friction parameters) equal to their maximum possiale

ues. A controller design is proposed. It uses a daithat

Figure 6: Second desigrk (= 150), desired step responsecan tune the transfer function of the linear part in the caxpl
(solid line), step response obtained by exact compensatane without affecting the desired step response. Thisigai
(dotted line) and step response obtained by over-compensaadjusted according to the maximum possible deviation in the

(dotted line)

¢ ! 2 s Ti?ne (seconds) ° ! ¢
Figure 7: Second design, desired step response (solicHirk)

step responses obtained By= 180 (dash-dot),k = 250
(dashed line) an¢lk; = k) = 750 (dotted line).

T s s Timf(sm)é T e

Figure 8: Second design, desired step response (solicdirk)
step response correspondingite= 2 x k; = 1500, 60% over-
compensation (dotted line).

Coulomb and stick friction7{%) which is the only parameter
necessary for controller design. Being always in the case of
over compensation, Describing Function (DF) analysis élus
to show that oscillation amplitude is diminued.

6 Appendix

Describing Function (DF) of a nonlinearity is the completiaa

of the fundamental component of the nonlinear element by the
M.ed(w t+d)

input sinusoidal [4],e. N (a,w) = = = M ci¢ As-
sume that Karnopp model together with its compensator (see
figure (2) and sectior?) is a nonlinearity with the applied
force F, (t) as input and the velocity(¢) as output. We de-
fine Fy = Fyoomp — Fs andF. = F..,,, — F.. Note that)(t)

is zero during the stick period and the influence of compensat
is shortening of this period. Thus, any error in the estioratif

F, influences the value df (F;). During the slip period , the
compensator tries to compensate Coulomb friction. To com-
pute the outpug(¢) for sinusoidal input, we use the differential
equation (2), considering the compensator and replakifg

by a.sin(w.t) :

m.jj(t) asin(wt) + (Fecomp — Fe)sign(y(t))

= F.(t) + F..sign(y(t))
y(t1) = dv.sign(y(t)) (16)

If y(t) > 0, the solution is:

. a FC

y(t) = E(cos(wtl) — cos(wt)) + E(t —t1) 17)
Note that both the input and the output are periodic signals
with period 7 = 2%, theny(t + I) = —g(t). Thus
in the Fourier series of the output, even coefficients do not
exist. Using the first odd coefficients, it is obtained that:

N(a) = “1-005(5.92;’25)3"”(9) = @uith = Replacinga; and

b, from the Fourier series definition, we obtaiV(a) =
. . .

L[ 7 y(t).e70.df. As Eq.(17) illustratesy(t) is a func-

tion of t = % Thus, the variablé is replaced byw.t. In




addition only the slip period is used for integration (dgrthe  [9] Suzuki, A. and M. Tomizuka, "Design and implementa-
stick periody(t) = 0). Thus,N (a,w) can be computed as: tion of digital servo controller for high speed machine
tools”, Proc. American Control Conference AACC, pp.

. to
N(a,w) = 4;;“’ . /t G(t)e I tdi (18) 1246 - 1251, (1991).
: 1

The results are:

Im(N(a,w)) = =L(w.ty —w.t1)(:25 + 2L (sin(w.t,)

T m

sin(w.t1)) L_(sin(2w.ty) — sin(2w.t1))

~ 8r.m
2.F.
mT.m.a

+-2(sin(w-t2) — sin(w.t1))(cos(w.t1) +
Fe w.t1) (19)

m.a

(cos(w.tz) — cos(w.t1))

Re(N(a,w)) = =2 (4 4y —wity)

mT.m.a

(cos(w.ty) — cos(w.t1)) — 52— (cos(2w.t2)

—cos(2w.t1)) — 2.1 (sin(w.ty) — sin(w.t2))

mT.m.a

+2—(cos(w.ty) — cos(w.ty))(cos(w.t1)

+-Eety) (20)

m.
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