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Abstract— H2-control with structured controllers is dis-
cussed, and a way to enhance the robustness of the design
with respect to real uncertain parameters is proposed.

Index Terms— Structured H2 control, parametric robustness.

I. INTRODUCTION

It is well-known that LQG or H2-controllers often lack ro-
bustness with respect to plant uncertainty. Here we consider
the situation when the plant has uncertain real parameters.
A theoretical tool to model parametric uncertainty is the
structured singular value µ∆ introduced by Doyle [5], but
its computation is known to be NP-complete, [13], [4], [3],
which makes it unfit for use within an optimization proce-
dure, where functions are called repeatedly. It is therefore
mandatory to use approximations of µ∆ or other heuristic
criteria, which are suited in constrained optimization pro-
grams. Here we propose a new method which robustifies a
given H2-performance index P(G, K) = ‖Tw→z(G, K)‖22
by minimizing variations ∇pP(G(p),K) with respect the
uncertain parameters p in the system.

A classical way to address the lack of robustness in LQG
is the well-known LQG/LTR procedure [15], which gains
robustness by trading it against a loss of performance. We
compare our new approach to LQG/LTR.

II. PREPARATION

A. Structured controllers

A controller in state-space form

K :
[

ẋK

u

]
=

[
AK BK

CK DK

] [
xK

y

]
(1)

is called structured if the matrices AK , BK , CK , DK depend
smoothly on a design parameter x,

AK = AK(x), BK = BK(x), CK = CK(x), DK = DK(x),

varying in some parameter space Rn, or in a constrained
subset of Rn. Here n = dim(x) is typically smaller than
dim(K) = n2

K + m2nK + p2nK + m2p2, where m2 is the
number of inputs, p2 the number of outputs, nK the order
of K. We also expect nK � nx, even though this is not
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formally imposed. Full order controllers satisfy nK = nx

and dim(x) = dim(K) and are referred to as unstructured.
A typical controller structure is the observer-based con-

troller

Kobs(x) =
[

A−B2Kc −KfC2 Kf

−Kc 0

]
, (2)

where x = (vec(Kc), vec(Kf )) ∈ Rnxm2+nxp2 . Other
practically useful structures include PID, decentralized and
reduced-order controllers, or even entire synthesis structures
combining controllers and filters.

B. Structured H2 problem
Given a plant in state space form

G :

24 ẋ
z
y

35 =

24 A B1 B2

C1 0 D12

C2 D21 0

35 24 x
w
u

35 , (3)

the structured H2 synthesis problem is the following opti-
mization program

minimize P(x) = ‖Tw→z (G, K(x)) ‖22
subject to K(x) internally stabilizing,x ∈ Rn.

(4)

In contrast with the standard H2 control problem [16, 14.2],
where optimization is over the class of full order controllers
and the observer-based structure (2) arises by itself, (4)
imposes the controller structure K(x) as a constraint. In
consequence, (4) is generally non-convex and more difficult
to solve than the standard H2 problem, and we accept locally
optimal solutions. We refer to P(x) as the performance. The
solution xnom of (4) is called the nominal design, K(xnom)
the nominal controller, and pnom = P(xnom) the nominal
performance.

C. Augmented system

In order to alleviate the notational burden of the formulas
to come, we shall employ a standard trick to render the
feedback controller (1) static. The plant G is artificially
augmented by

Aaug =
[

A 0
0 0

]
, Baug

1 =
[

B1

0

]
, Baug

2 =
[

0 B2

I 0

]
,

Caug
1 =

[
C1 0

]
, Caug

2 =
[

0 I
C2 0

]
,

Daug
12 =

[
0 D12

]
, Daug

21 =
[

0 D21

]
.

Switching back from Gaug to G for notational convenience,
we may without loss compute controllers K(x) which are
static, and at the same time, structured.



III. TRADE-OFF VIA MIXED SYNTHESIS

The situation we are concerned with is when the open-
loop system contains uncertain parameters p. Assuming
that the nominal parameter values are p0, so that G =
G(p0), we wish to synthesize K(xrob) in such a way that
it still performs well if p differs significantly from p0.
A general heuristic strategy is to introduce a robustness
function R(p,x) which when minimized over x for fixed
p increases the parametric robustness of the design around
p. One may then consider the following trade-off between
nominal performance and robustness:

minimize R(p0,x)
subject to P(p0,x) ≤ pnom(1 + α)

K(x) internally stabilizing
(5)

Denoting the solution of (5) as xrob, we can roughly say
that the robust controller K(xrob) accepts a loss of α ·100%
over nominal performance pnom and uses this new freedom
to buy some additional robustness.

Several robustness measures are known in the literature.
A classical idea is to use the various sensitivity functions,
see e.g. [6]. Here we propose a new idea, which uses the
variation of P directly to robustify program (4):

R(p,x) = ‖∇pP(p,x)‖2,

where ‖ · ‖ is a suitable norm in parameter space.

A. Computing R(G, K)
Assuming without loss that G = G(p0) is augmented and

K static, we put

A(G, K) = A + BKC, B(G, K) = B2 + BKD21,

C(G, K) = C2 + D12KC, D(G, K) = D12KD21 = 0.

Then the squared H2 norm can be expressed as

P(G, K) = Tr
(
B(K)>XB(K)

)
(6)

= Tr
(
C(K)Y C(K)>

)
,

where X = X(G, K) is solution of

A(G, K)>X + XA(G, K) (7)
+C(G, K)>C(G, K) = 0,

and Y = Y (G, K) is solution of

A(G, K)Y + YA(G, K)> (8)
+B(G, K)B(G, K)> = 0.

This allows to compute partial derivatives of P with respect
to G and K.

Lemma 1: The objective P in (6) is smooth in the open
domain of all closed-loop stabilizing pairs (G, K). For any
(G, K) in this set we have

1) ∇KP(G, K) = 2
[
B>X + D>

12C(K)
]
Y C> +

2B>XB(K)D>
21,

2) ∇AP(G, K) = 2XY ,
3) ∇BP(G, K) = 2XY C>K> + 2XB(K)D>

21K
>.

4) ∇CP(G, K) = 2K>B>XY + 2K>D>
12C(K)Y ,

5) ∇C2P(G, K) = 2C(K)Y ,
6) ∇B2P(G, K) = 2XB(K),
7) ∇D21P(G, K) = 2K>B>XB(K),
8) ∇D12P(G, K) = 2Y >C>K>,

where X solves (7) and Y solves (8).
The proof will be sketched in the appendix. Recall that we
are dealing with structured controllers. Smooth dependence
on x allows an expansion of the form K(x) = K(x0) +∑n

i=1 Ki(x0)(x − x0) + O(‖x − x0‖2), where Ki(x0) =
∂K(x0)

∂xi
. Using the chain rule, we get

Corollary 1: Under the assumptions of Lemma 1 we have
∇xP(x,p) = (g1(p,x), . . . , gn(p,x)), where gi(p,x) =

Tr
[(

2
[
B>X + D>

12C(K)
]
Y C> + 2B>XB(K)D>

21

)>
Ki(x)

]
.

�
Let us now specialize to the case where only the system

matrix A in G features uncertain parameters p. The general
case, where uncertain parameters appear in other parts of G,
can be handled analogously. Assuming a smooth dependence
on p, we get an expansion of the form A(p) = A(p0) +∑s

i=1 Ai(p0)(p − p0) + O(‖p − p0‖2), where Ai(p0) =
∂A(p0)

∂pi
. We have the following

Corollary 2: Under the assumptions of Lemma 1 we
have: ∇pP(p,x) = (h1(p,x), . . . , hs(p,x)), where
hi(p,x) = 2Tr(Ai(p)>XY ). �

Smallness of the variation ∇pP(p0,x) at the solution
K(x) can be assessed by controlling its size in some norm.
If a norm ‖p‖ in parameter space is given, reflecting for
instance an appropriate weighting between the uncertain
parameters, then we are led to control ∇pP in the dual norm
‖ · ‖∗. During the following we shall consider the Euclidean
norm ‖p‖, so that ‖ · ‖∗ is also the Euclidean norm. (The
reader will easily see how to extend our approach to other
choices of ‖ · ‖.) With these arrangements our robustness
objective should be chosen as

R(p0,x) = ‖∇pP(A(p0),K(x))‖22 (9)

=
s∑

i=1

Tr
(
2Ai(p0)>XY

)2 =
s∑

i=1

hi(p0,x)2.

B. Computing ∇xR(p,x)

This seems to indicate that almost no extra work is needed
for the new robustness function (9), but the question is how
to compute derivatives of R with respect to x. We have

∇xR(p,x) =
s∑

i=1

hi(p,x)∇xhi(p,x),

where the hi are given in Corollary 2 and are readily
computed from X, Y . We can therefore concentrate on how
gradients ∇xhi are computed. We recognize this as a matrix
realization of the mixed second derivative D2

x,pP . Unfortu-
nately, unlike first-order derivatives, it is not clear how to
compute matrix representations at the second order level.
In [14] a representation of the Hessian ∇2

KKP is obtained,
but closer inspection shows that Kronecker products are



used and matrix inversions are required. Here we favor an
approach where parts of the mixed second derivative are pre-
calculated, while the rest is computed on the fly. There are
two possibilities to represent D2

x,pP , namely, Dp∇xP or
Dx∇pP . In the case where dim(p) < dim(x) we compute
Dp∇xP . We have

∂hi(p,x)
∂xk

= DxDpP(p,x)∆pi∆xk

= DpDxP(p,x)∆xk∆pi

= DADKP(A(p),K(x))Kk(x)Ai(p)

so that

∇xhi(p,x) = DA∇KP(A(p),K(x))Ai(p).

Substituting the expression in item 1 of Lemma 1 for ∇KP ,
we get

DA∇KP(A(p),K(x))Ai(p) = 2B>ΦiY C>

+2[B>X + D>
12C(K(x))]ΨiC

>

+2B>ΦiB(K(x))D>
21,

where

Φi = DAXAi(p), Ψi = DAY Ai(p), i = 1, . . . , s.

Then, putting

Λi = 2B>ΦiY C> + 2[B>X + D>
12C(K(x))]ΨiC

> (10)
+2B>ΦiB(K(x))D>

21,

i = 1, . . . , s, and Λ =
∑s

i=1 hi(x,p)Λi, we obtain the
gradient ∇xR as

∇xR(x) =
(
Tr(Λ>K1(x)), . . . ,Tr(Λ>Kn(x))

)
.

The final link is now to compute Φi and Ψi, which requires
another set of Lyapunov equations. We have the following

Proposition 1: Computing R(p0,x) and its gradient
∇xR(p0,x) with respect to x is possible by solving 2(s+1)
Lyapunov equations. Those are (7) for X , (8) for Y ,

[A + BK(x)C]>Φi + Φi[A + BK(x)C] = (11)
−Ai(p0)>X −XAi(p0)

for the Φi, i = 1, . . . , s, and

[A + BK(x)C]Ψi + Ψi[A + BK(x)C]> = (12)
−Y Ai(p0)> −Ai(p0)Y

for the Ψi, i = 1, . . . , s. �
We have the following

Algorithm 1. Computation of R and its gradient ∇xR

Parameters: Precomputed data Ai = ∂A(p0)
∂pi

and possibly
Kν = ∂K(x)

∂xν
.

1: Given x compute K = K(x), solution X of (7), and
solution Y of (8).

2: For i = 1, . . . , s compute A>i XY and R using (9).
3: For i = 1, . . . , s compute Φi solution of (11), and Ψi

solution of (12).
4: Let h(p0,x) =

(
Tr

(
2A>1 XY

)
, . . . ,Tr

(
2A>s XY

))
ac-

cording to Corollary 2.
5: For i = 1, . . . , s compute Λi according to (10). Then

compute Λ =
∑s

i=1 hiΛi.
6: If K(x) is not affine then compute Kν(x). Otherwise

take the precomputed Kν .
7: Obtain ∇xR =

(
Tr(Λ>K1(x)), . . . ,Tr(Λ>Kn(x)

)
.

IV. NUMERICAL EXPERIMENT

A. Benchmark Example
We consider the mass-spring system in Fig. 1, which is a

prototype of a flexible system. We perform an LQG study

Fig. 1. k = 1N/m, f = 0.0025Ns/m. Measured output is y = x2, control
force u acts on m1.

where we expect the LQG controller to be robustly stable
with respect to 30% variation in the uncertain parameters
m2 and k. In the LQG set-up; covariance matrices of state
and output noise are W = 1 and V = 1, state and input
weighting matrices are Q = CT C, R = I . As usual this set-
up is transformed to a standard H2 plant (3) as explained in
[1] . The data are

A =

2664
0 1 0 0

− k
m1

− f
m1

k
m1

f
m1

0 0 0 1
k

m2

f
m2

−k
m2

−f
m2

3775 , (13)

B =

264
0
1

m1
0
0

375 , C =
ˆ

0 0 1 0
˜
, D = 0.

Since an observer-based controller (2) is of order nK = 4,
we have to augment the system from A ∈ R4×4 to Aaug ∈
R8×8, as in section II-C. The non-linear expression A(p) =
A(p0 + ∆p) is2664

0 1 0 0
− k+∆k

m1
− f

m1

k+∆k
m1

f
m1

0 0 0 1
k+∆k

m2+∆m2

f
m2+∆m2

−k−∆k
m2+∆m2

−f
m2+∆m2

3775
= A(p0) + DpA(p0)∆p +O(‖∆p‖2),



which gives us DpA(p0)∆p =2664
0 0 0 0

−∆k
m1

0 ∆k
m1

0
0 0 0 0

m2∆k−k∆m2
m2

2

−f∆m2
m2

2

−m2∆k+k∆m2
m2

2

f∆m2
m2

2

3775 .

A1(p) =
∂A

∂k
=

2664
0 0 0 0

− 1
m1

0 1
m1

0
0 0 0 0
1

m2
0 − 1

m2
0

3775 ,

A2(p) =
∂A

∂m2
=

2664
0 0 0 0
0 0 0 0
0 0 0 0

− k
m2

2
− f

m2
2

k
m2

2

f

m2
2

3775 .

Putting Z = 2Y X , we obtain h1(p,x) = Tr(ZA1) =
Z32/m1 + Z34/m2 − Z12/m1 + Z14/m2 and h2(p,x) =
−kZ14/m2

2 − fZ24/m2
2 + kZ34/m2

2 + fZ44/m2
2. �

B. Results

As can be seen in Fig. 2 top, the nominal LQG controller
Knom = K(Kc

nom,Knom
f ) misses the robustness goal. Pro-

gram (5) with (9) is used to enhance parametric robustness of
the nominal controller. The result is Krob = K(Krob

c ,Krob
f )

and its parametric robustness is shown in Fig. 2 middle.
Notice that in program (5) the observer structure has to be
imposed as a constraint. As a curiosum, no algebraic Riccati
equations are obtained for Krob

c ,Krob
f , but the observer

structure is nevertheless maintained. Robustness leads to a
degradation of nominal performance from P(G, Knom) =
3.992 to P(G, Krob) = 27.982. The constrained program
(5) was solved using the matlab function fmincon [17].

A classical method to enhance robustness of LQG is
the LTR procedure, which we applied here for the purpose
of comparison [1]. This generates a family K(ρ) of LQG
controllers, where the robustness with ρ = 0 corresponds
to the robustness of LQ controller. As ρ decreases, the
robustness improves (R(G, K(ρ)) decreases) , while the
performance degrades (P(G, K(ρ)) increases). In this study
LTR was unable to achieve parametric robustness over the
square of 30% parameter variations. Fig. 2 (bottom) shows
the stability region of Kltr := K(ρ), adjusted so that
P(G, Kltr) = 27.852 near to P(G, Krob) = 27.982.

In Fig. 3 we plotted relative performance
P(G(k,m2),K)−P(G(k0,m0

2,K)

P(G(k0,m0
2),K)

×100 over the uncertainty
square Ω = (k0 ± 30%k0,m0

2 ± 30%m0
2) for

K ∈ {Knom,Krob,Kltr}. In the case of Knom = Klqg

this value is not finite everywhere and reaches 600% in
the region where the system is still stabilized. In contrast,
the robustified LQG controller Krob (via (5)) holds a fairly
uniform performance level over the entire square (less
than 1% variation), but performs worse at the nominal
parameter value p0. However, comparing to the Kltr

achieving approximately the same performance, Krob has
considerably improved the rebostness
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Fig. 2. Stability region of LQG controller (top), robust LQG controller
based on (5) (middle), and LQG/LTR controller (bottom). The value α = 45
is used to compute the robust LQG controller. Robust and LTR controller
have the same nominal performance.

V. CONCLUSION

Lack of parametric robustness of LQG controllers and
more general structured H2 controllers was addressed by a
constrained program (5), which accepts a quantified loss of
nominal performance in order to gain additional robustness.
We proposed to use a suitable norm of the variation of the
performance criterion as a robustness index. In the context
of LQG the new procedure was compared to the LQG/LTR
procedure based on the input sensitivity function, which is a
classical procedure to enhance system robustness.



VI. APPENDIX

The first item follows readily from [14, Theorem 3.2].
We elaborate on items 2. - 8. For a function P : H1 ×
H2 → R, where H1,H2 are Hilbert spaces, we let
DxP(x, y) denote the partial derivative with respect to
x ∈ H1, which is a continuous linear functional on H2.
The gradient ∇xP(x, y) ∈ H2 is related to DxP(x, y) by
DxP(x, y)∆y = 〈∇xP(x, y),∆y〉 for every ∆y ∈ H2.
Notice that

DGP∆G = Tr
(
{DGX∆G}BB>

)
+ 2Tr

(
X{DGB∆G}B>

)
,

omitting arguments, where Φ := DGX∆G solves the
Lyapunov equation

A>Φ + ΦA = −{∆GA∆G}>X −X{∆GA∆G} (14)
−{DGC∆G}>C − C>{DGC∆G}.

We multiply (14) with Y from the right, and match it with
(8) multiplied with Φ from the left. Taking traces, the two
left hand sides are identical, hence the same is true for the
two right hand sides. This gives the identity

Tr
(
ΦBB>

)
= 2Tr

(
{DGA∆G}>XY

)
+2Tr

(
{DGC∆G}>CY

)
.

Substituting this back in the formula for DGP∆G gives

DGP∆G = 2Tr
(
{DGA∆G}>XY

)
+ 2Tr

(
{DGC∆G}>CY

)
+2Tr

(
X{DGB∆G}B>

)
.

Now observe that

DGA(G, K)∆G = ∆A + ∆BKC + BK∆C,

DGC(G, K)∆G = ∆C2 + ∆D12KC + D12K∆C,

DGB(G, K)∆G = ∆B2 + ∆BKD21 + BK∆D21.

Hence

〈∇GP(G, K),∆G〉 = Tr
(
(∆A + ∆BKC + BK∆C)>2XY

)
+Tr

(
(∆C2 + ∆D12KC + D12K∆C)>2(C2 + D12KC)Y

)
+Tr

(
2X(∆B2 + ∆BKD21 + BK∆D21)B>

)
.

From that we can readily read off the answers 2. - 8., bearing
in mind that

〈∇GP,∆G〉 = 〈∇AP,∆A〉+ · · ·+ 〈∇D12P,∆D12〉.

�
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