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Abstract—When multilayer perceptrons (MLPs) are used for
nonlinear regression, it is generally supposed that output data
are corrupted by additive independent and identically distributed
(i.i.d.) noise and the ordinary least square method is usually used
to estimate the network weights. However, in many practical
situations, the noise samples may be correlated. In this case, the
estimation of noise parameters can be used to improve the ap-
proximation. Estimation of the noise structure can also be used to
find a stopping criterion in constructive neural networks. To avoid
overfitting, a network construction procedure must be stopped
when residual can be considered as noise. The knowledge on the
noise may be used for “whitening” the residual so that a correla-
tion hypothesis test determines if the network growing must be
continued or not. In this paper, supposing a Gaussian noise model,
we study the problem of multi-output nonlinear regression using
MLP when the noise in each output is a correlated autoregressive
time series and is spatially correlated with other output noises. We
show that the noise parameters can be determined simultaneously
with the network weights and used to construct an estimator with
a smaller variance, and so, to improve the network generalization
performance. Moreover, if a constructive procedure is used to
build the network, the estimated parameters may be used to stop
the procedure.

Index Terms—Colored noise, generalization, maximum likeli-
hood estimation, neural networks.

I. INTRODUCTION

I N statistics, it is often desirable to find a relation between
a group of variables. In general, some of these variables,

calleddependent variablesor output variablesor responses, de-
noted by , are of a particular interest. The other
variables , calledindependent variablesor input
variablesor regressors, are used to predict or to explain the be-
havior of . The relation is expressed using the
functions

(1)

This relation remains approximative because of the influence of
other unknown variables, on the one hand, and the measurement
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errors, on the other hand. This uncertainty is usually modeled by
additive zero-mean random terms1

(2)

which implies directly

(3)

Usually, the variables evolve according to another independent
variable , which can for example correspond to time. In prac-
tice, only a limited number of samples of these variables asso-
ciated to various values ofare available which form the data
base.

A typical nonlinear regression problem using MLP can so be
presented as following. Given a-size data set

(4)

where are samples of the input variable are
samples of the output variable and represent the
output noise, one wants to find a good approximation of the
vector function . The noise is thus defined as the part of

which does not depend on. Supposing a continuous
and bounded function, the universal approximation theorem of
Cybenko [2] guarantees that can be approximated with an
arbitrary precision using a suitable size single hidden layer MLP
whose output can be written as where is the op-
timal weight matrix. In other words, for all , there exists a
single hidden layer MLP with weight matrix , so that

(5)

Let be the output of a single hidden layer MLP con-
taining sigmoidal neurons and satisfying (5) for a desired,
sufficiently small value of which allows replacing by

in (4). In this case, (4) may be rewritten as

(6)

Suppose represents the output of the class of single
hidden layer MLP containing sigmoidal neurons; denoting

, we would like to optimize to obtain
the best approximator for . When the noise samples,, are
independent and identically distributed (i.i.d.), ordinary least
square (OLS) estimation is usually used and gives a consistent
estimator. It consists in minimizing
where is the vector containing all the samples of all the

1Other error structures like multiplicative errors are sometimes considered
[1].
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Fig. 1. Blood pressure modeling: Estimation residual and its autocorrelation function.

residual outputs. However, in many practical situations, the
noise samples may be correlated and/or non stationary. Such
a case is shown in Fig. 1, in which one would like to model
the blood pressure of a patient as a function of his corporal
acceleration and his heart rate. The input and output samples
are collected during 48 h with a sampling period min.
The OLS method is used to train the different single hidden
layer MLP corresponding to different number of neurons in
the hidden layer. This experiment shows that all the models,
including the best of them according a performance estimate,2

provide a temporally correlated residual (Fig. 1). One may
conclude that this correlation is due to the unknown inputs
influence (feeding, stress, ) and cannot be removed using
only two known inputs. According to our definition of noise in
(4), we can so conclude the existence of a temporally correlated
noise in the model. The question is: “may this correlation be
used to improve the neural-network estimation?” Although this
problem has not been intensively studied in the neural-network
literature, statisticians, and automatic control researchers have
considered it more.

It is well known in linear dynamic system identification that
the presence of the colored noise leads usually to a biased pa-
rameter estimation [3]. Many approaches have been proposed
to obtain unbiased estimation which depends essentially on the
noise structure. The main strategy consists in identifying the
noise parameters simultaneously with the system parameters in
order to obtain a whitened residual [3].

In statistics, the presence of colored noise has been largely
studied. When the covariance matrix of the noise is known, the
well-known generalized least square (GLS) method which con-

2A test database is used to estimate the performance.

sists in minimizing being the
noise covariance matrix, provides a better parameter estimation
[1]. As is basically unknown, we have to estimate it. A pos-
sible strategy can be the following [4]: a first OLS estimation,
computation of the residual, estimation ofusing the residual,
computation of and final GLS estimation of . Unfortu-
nately, this strategy cannot be used in practice. At first, unless
we have multiple measurementsfor the same input , the es-
timation of will be impossible because an

symmetric matrix, with indepen-
dent parameters, cannot be identified using data sam-
ples. Moreover, the approximation error of implies a larger
error in the computation of its inverse. Finally, for large training
data bases, the inverse computation is expensive and the opti-
mization algorithm will be very time-consuming, unless the ma-
jority of the entries of are zero. For these reasons, in prac-
tice, we have to choose a pertinent and simple parametric noise
model with few parameters so that the estimation of its param-
eters is very simple. Moreover, as the optimal network size for
a given problem cannot generally be determineda priori, the
above two-stage estimator is not desirable and it is better to es-
timate the noise parameters simultaneously with the system pa-
rameters, for example using a maximum likelihood approach.
As we will see, this method is especially very efficient when
a constructive procedure is used to build the network. In the
literature of linear time series modeling, the case of temporal
correlated noise is largely studied and two-stage and maximum
likelihood estimators are derived [5], [6]. In the field of para-
metric nonlinear regression, there are also a few similar works
for single output systems where the output is corrupted by tem-
porally correlated noise [7]–[9]. A review of these works can be
found in [1, Ch. 6].
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Another frequent practical case [10], [11] is the case of
spatially correlated noise. This situation can be occurred when
a common noise source influences the different outputs of a
system.3 The noises in different outputs can so be considered
as the components of a multidimensional noise, defined by its
covariance matrix (for a Gaussian noise). The knowledge on
this matrix may be used to improve the system modeling.

Motivated by these works, we find interesting to study the
more general case of spatio-temporal noise in a multioutput
system, modeled by a multilayer perceptron, in order to reduce
the variance of the estimator, and so, to improve the network
generalization capacity. Another motivation to address this
problem is to find a stopping criterion for constructive neural-
network algorithms. In general, the optimal size of an MLP
for a given problem is unknown. A too small network cannot
learn the data with a sufficient accuracy (the corresponding
estimator is biased), and a too large one leads to overfitting
(the corresponding estimator has a large variance), and thus,
to poor generalization. Constructive approaches have been
used to solve this problem [12]–[15]. In these methods, one
starts with a simple network and adds progressively new units
until the network can fit the target function. The main problem
is to define a relevant stopping criterion which avoids an
uncontrolled network increase. One of the solutions proposed
recently is to use the residual signal properties [16]: to avoid
overfitting, the network growing procedure is stopped when
the residual can be considered as noise. If the system noise is
i.i.d., a simple correlation test on the residual can determine
if it can be considered as i.i.d. noise or not. Evidently, if the
noise is not i.i.d., this criterion fails. As we will see, in this
case, prior knowledge on the noise or on the estimation of its
characteristics can be used for “whitening” the residual so that
the correlation test is still usable.

This paper is organized as follows. In Section II, after the
problem statement for a spatio-temporal noise model, the gen-
eral maximum likelihood (ML) solution is proposed and two
special cases (first- and second-order autoregressive noises) are
studied with more details. Section III describes the simplified
case of single output network. In Section IV, a stopping crite-
rion for constructive neural networks by whitening the estima-
tion residual is proposed. Section V describes the experiments.
A summary and discussion are given in Section VI.

II. SPATIO-TEMPORALCORRELATEDNOISE INMULTI-OUTPUT
NEURAL NETWORKS

As mentioned in the previous section, when the noise covari-
ance matrix is unknown, we have to choose a pertinent para-
metric noise model and try to identify the parameters. In the fol-
lowing, two kinds of noise correlation are investigated: autocor-
relation between the successive noise samples of each output,
and cross-correlations between the different output noises. In a
time-series estimation problem, the first kind may be due to a
filtering effect (temporal correlation) and the second one may
be the effect of a common noise source on the different outputs
(spatial correlation).

3For example, an audio noise influencing many microphones.

Fig. 2. Signal generating model.

The noise model which we used is a joint Gaussian-dimen-
sional stationary white noise, filtered by th-order autore-
gressive filters (Fig. 2). The choice of autoregressive model sim-
plifies considerably the computations and is not so restricting
because each stationary ARMA system can be modeled using
an infinite-order AR model whose high-order terms may be ne-
glected.

A. Statement of the Problem

Suppose in (4) are the samples of the mentioned spatio-
temporal correlated Gaussian noise and suppose that
is the output vector of a single hidden layer MLP providing
a sufficiently accurate approximation of so that the dif-
ference is negligible in comparison with the
noise. In the following, we neglect this theoretical imprecision
and suppose that can be exactly represented by .

Considering this remark, suppose we have ainput,
output system which can be represented using the following
equations:

(7)

(8)

(9)

where are the system out-
puts, are the system inputs,

are
the neural-network outputs (approximations),

are th-order autoregressive stationary colored
noises and are jointly Gaussian
white noises with if ; and zero
otherwise, and . is the covariance matrix
of are the diagonal matrices, modeling theth-order
autoregressive structure of and is the network optimal
weights matrix that must be estimated. Denotingth diagonal
element of matrix by , note that if is stationary,

is stationary and causal if and only if [17]

(10)



120 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 1, JANUARY 2002

Assuming that samples of the system inputs and outputs are
collected at regular time intervals, we want to find the maximum
likelihood estimator for and .

The problem can be treated in two different manners. In
the first approach, one can use separate, independent
multi-input–single-output (MISO) networks for estimating
outputs. In this case, since the matricesare diagonal, each
output only depends on one component of the noise

(11)

Thus, the spatial correlation of the noise has no influence on
the estimation of the network weights, so that only the diagonal
elements of the covariance matrixhave to be estimated. If this
approach is chosen, the reader may go directly to the Section III
of this paper, where the special case of temporally correlated
noise in the MISO networks is treated.

A second approach, however, consists in using a sole multi-
input–multi-output (MIMO) network for estimating the out-
puts. In this case, one has to consider the spatial correlation be-
tween the noise components and the estimation of the off-diag-
onal elements of becomes indispensable. Note that a MIMO
network can generally be modeled with less parameters in com-
parison with separate MISO networks because some param-
eters (early layer weights for an MLP) can participate in the esti-
mation of many outputs. The reduction in the number of param-
eters can be crucial if the outputs can be implemented by sums
of the same hidden neurons. On the other hand, the training of a
MIMO network is generally more difficult because more param-
eters must be updated simultaneously. Consequently, the con-
vergence problems are more probable to happen with the MIMO
networks. Moreover, the use of a MIMO network makes the
analysis of the complexity of the problem difficult: some out-
puts may require many hidden neurons, whereas others may be
quasilinear functions of the inputs, but this will be concealed in
the weights of the MIMO network.

The choice between the two approaches depends on the
treated problem. Anyway, as a theoretical point of view, the
study of the problem in its complete form (the second approach)
is important. Thus, in the remaining of this section, the second
approach is considered and the off-diagonal elements of the
matrix will be estimated. As are diagonal
matrices and is a symmetric matrix, there are

independent parameters to
estimate. Let us write the likelihood function, decomposed in
two parts

(12)

The second part can be easily determined using

(13)

Conditioning on a random variable means treating it as a deter-
ministic constant. So, using (7)–(9)

(14)

(15)

Denoting the estimation residual by

(16)

where is the network output for theth observation
and is the actual network weights matrix, we obtain

(17)

Thus, (13) and (17) give the second right-side term of (12). The
first term is more difficult to obtain. The solution consists in de-
composing it in conditional likelihood terms and in determining
each term separately

(18)

In the following, we study the two special cases of first- and
second-order AR noise: and . Higher order struc-
tures could be identified similarly.

B. AR1 Model

In this case, (18) reduces to . Using (8)
and noting that is independent of , we can write

(19)
Denoting by and using the stationary properties
of , (19) reduces to discrete-time Lyapunov equation [18]4

(20)

Using matrix to vector operator and the Kronecker
product defined, respectively, by

and

4For an AR1 model, the solution (23) may follow directly from (20). However,
the notations being used in the next section, we keep the details of the proof.
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...
...

...

where and represent, respectively, the size ofand , and
using the following property: ,
we can obtain the vector equivalent of (20)

(21)

which can be solved by

(22)

But, since is a diagonal matrix with diagonal entries
and and are the symmetric matrices with entries and

respectively,5 it can be easily shown that

(23)

Then, using

(24)

can be computed considering that

(25)

Taking the logarithm of (12), and using (13), (17), and (25), the
log-likelihood function can be computed

(26)

After eliminating the constants, the maximum likelihood esti-
mation of the unknown matrices and may be obtained
by minimizing the following cost function:

(27)

Notice that the number of independent parameters of (27) is
.

5
� = � .

C. AR2 Model

Denoting and
, we can compute (18). Using the pre-

vious section results, one can write

(28)

The computation of is more tricky. To
compute this function, we can compute

and replace and by
and , respectively. For this

purpose, we must determine the density function of the part of
which is not predictable from

(29)

where , i.e.

(30)

Clearly, is a Gaussian random
vector: . Its covariance matrix can
be computed as follows:

Using (30) and considering that is symmetric, a simplified
equation can be obtained

(31)

Finally, using (30) and (31)

(32)

Once more, using the matrix to vector conversion and the Kro-
necker product, and satisfy (see Appendix)

(33)

(34)

where

(35)

(36)

Using (13), (17), (28), and (32), taking the logarithm of (12)
and eliminating the constants, the maximum likelihood estima-
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tion of the unknown matrices and is obtained by min-
imizing the following objective function:

(37)

in which there are parameters to
estimate.

III. A SIMPLIFIED CASE: SINGLE OUTPUT NETWORKS

The case of single output systems is interesting because sim-
pler cost functions can be extracted for an arbitrary-order AR
noise model. In this case, given a data set:

(38)

where are the samples of the input variables , col-
lected at regular time intervals: are samples of
the output variable and are samples of a stationary
correlated noise, resulted from filtering an i.i.d. Gaussian noise

by a th-order autoregressive filter

(39)

we want to find a good approximation of the underlying relation-
ship . Using the results of previous section, (17) reduces to

(40)

where represents the residual of the actual network.
Thus, using (12) and (13) the complete likelihood function is
written

(41)

Denoting , the covariance matrix of
i.e., the first samples of

, we can write

(42)

Taking the logarithm of (41), using (42) and after eliminating
the constant terms, maximizing the likelihood function reduces
finally to minimizing the following function:

(43)

Evaluation of this cost function requires the inversion of the
matrix . Denoting th entries of ,

it is shown that [19]

for (44)

where . Values of for can be inferred
from the fact that is symmetric. For the special case of AR1
process, it can be easily verified that which im-
plies

(45)

For an AR2 process, the (44) implies

(46)

and

(47)

It can be easily verified that (45) and (47) are the special versions
of (27) and (37) for single output systems.

IV. A STOPPINGCRITERION FORCONSTRUCTIVENEURAL

NETWORKS

In general, the optimal size of an MLP for a given problem
is unknown. A too small network cannot learn the data with a
sufficient accuracy and a too large network leads to overfitting
and thus to poor generalization. Many approaches have been
proposed to determine dynamically the network size during
training [20]–[23] and constructive algorithms are among the
most promising [12]–[15], [24]. These algorithms grow dynami-
cally the size of the hidden layers until a satisfying performance
is achieved. The problem is to define a relevant stopping criterion
which avoids uncontrolled network increase. This criterion may
be based on a separate validation set [25], cross validation [26]
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(a) (b)

Fig. 3. Target function (solid line) and its noisy samples (points) as functions of (a) time and (b) input signalx (a uniformly distributed random signal).

or bootstrapping [27]. It may also be obtained from a number of
information criteria like Akaike’s information criterion (AIC)
[28], Bayesian information criterion (BIC) [29] or generalized
prediction error (GPE) [30]. However, these methods either
require additional data or are very time consuming.

Another solution proposed recently, inspired by the classical
system identification tests, is to use the residual signal properties
[16]. From (4) and (5), it is clear that an optimal neural-network
approximation is achieved if i.e., if the error
samples are , i.e., if the residual can be
considered as noise. If noise samplesare i.i.d., the stopping
criterion may consist in comparing the residual with such noise.
In other words, denoting , the th sample of theth residual
output, the criterion is nothing but a simple hypothesis test:

versus .
The correlation test determines if the residual can be considered
as noise or not. If it is not the case, one concludes that the residual
still includes a part of the signal and the construction procedure
mustbecontinued.Evidently, if thenoise isnot i.i.d., thiscriterion
fails and the algorithm may uncontrollably progress toward over-
fitting. In this case, prior knowledge on the noise or the estimate
of its characteristics can be used for “whitening” the residual.
Thus, the mentioned hypothesis tests would be still usable.

Thus, the methods mentioned in the previous sections are also
useful to stop the construction procedure. At each step of the
network construction, using the maximum likelihood approach,
the noise parameters are estimated simultaneously with the net-
work weights. Then, these parameters are used to construct a
whitening linear filter. The residual of the neural-network esti-
mation is applied to this filter and a correlation hypothesis test is
applied to verify if the result can be considered as white noise. If
this is the case, the procedure is stopped; otherwise, it continues.
The procedure is very similar to linear system identification in
presence of colored noise where the noise inverse filter is iden-
tified during the system identification [3].

This technique, being very efficient in many cases, has un-
fortunately its own drawbacks. Suppose we have an undersized
network whose residual contains the correlated noise plus a part
of the signal. Evidently, the whitening filter, which can be con-
sidered as the inverse of the colored noise generating AR filter,

is an MA high-pass filter. If the signal part of the residual is low
frequency, it may be eliminated by the inverse filter so that the
filter output is considered as white noise and a false stopping
decision is made.

V. EXPERIMENTAL RESULTS

In this section, we present our experimental results with three
simulation examples and a real-world problem.

A. Temporally Correlated Noise in a Single Output System

In the first experiment, we study a simple, single output
model where only temporal correlation of noise is considered.
We would like to estimate the function

using a single hidden unit MLP, from samples of , cor-
rupted by a first-order AR noise

where is a Gaussian, i.i.d. noise and the sub-
script indicates a sample collected at time being the
sampling period. The inputs are the samples of a temporal
i.i.d. random sequence, uniformly distributed on [0.5, 0.5].
Fig. 3(a) presents the signals and as functions of time
for and 6 dB. The correlated
structure of noise is quite clear in the figure. Fig. 3(b) illustrates
the same signals as functions of input signal, where the noise
correlation is not appeared directly. Note that while the OLS
method needs only Fig. 3(b) (i.e., the couples ) to make
its estimation, Fig. 3(a) (the order of couples in time) is also
necessary for an ML estimation. In the following, we compare
the performance of four different estimators for different values
of and .

1) OLS estimator.

6Signal-to-noise ratio= 10 log (E =E ), whereE represents the signal
power andE is the power of white noise,n, before AR filtering.
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(a) (b)

(c) (d)

Fig. 4. (a) OLS estimation. (b) GLS Estimation. (c) Two-stages Estimation. (d) ML Estimation. In all the figures, the solid line represents the targetfunction, the
points its noisy samples, and the dashed line the estimation.

(a) (b)

Fig. 5. Evolution of (a) the cost function and (b) the estimation of correlation coefficient of noise during ML training for example of Fig. 4.

2) GLS estimator. To realize this estimator, we use the true
value of . It should then provide the best performance
among four estimators.

3) Two-stage estimator. This estimator uses the valuees-
timated by OLS estimator for a second GLS estimation.

4) ML estimator. This estimator minimizes the cost function
(45).

For each chosen triplet and experiences corre-
sponding to different noise seed values are done. The result
for a sample run corresponding to and

dB is shown in Fig. 4 for each of four estimators.
For the same example, the evolution of the cost function in ML
algorithm and the evolution of the estimation of correlation co-
efficient, , during training is presented in Fig. 5. Fig. 6 presents
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(a) (b)

(c) (d)

(e) (f)

Fig. 6. Mean (at left) and standard deviation (at right) of the test error as functions of� (forN = 100 and S/N= 24:7 dB),N (for � = 0:95 and S/N= 24:7 dB)
and S/N (for� = 0:99 andN = 50) for the algorithms OLS (solid line), GLS(---), two-stage(-:-) and ML (. . .).

the mean and the standard deviation of test error7 for each esti-
mator as functions of and .

According to the figures, it is clear that the estimators GLS
and OLS are, respectively, the best and the worst of the four

7In all the simulation examples of this section, we mean by test error, the sum
of squared estimation errors with respect to the regression function, evaluated on
a large number of inputs, different from those of the training set, in the domain
limited by the training set.

estimators in generalization. This result is not surprising since
the GLS estimator knows exactly the correlation structure of
noise and the OLS estimator pays no attention to it. Among the
two others, estimator ML is the best for highly correlated noises
(great values of ) and the worst for the lowly correlated noises.

Moreover, Fig. 6 shows that when all the estimations are very
good or very bad, the difference of their performance is not con-
siderable. Indeed, in absence of correlation (small values of)
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or for the great training data bases, the noise structure has not
much influence on the estimatation. Consequently, all the esti-
mators manage to follow the regression function. On the other
hand, when the correlation is too strong or the training data base
is too small, the distinction between the signal structure and the
noise structure is not easy and the estimation of MLP is so poor
that the knowledge on the noise structure will not be of much
use.

The four estimators are also compared on a more complicated
problem, i.e., the estimation of the function:

using an MLP with five hidden units from 100 samples cor-
rupted by a first-order AR noise

where is a Gaussian i.i.d. noise and
the inputs are the samples of an i.i.d. sequence, uniformly
distributed on . The result, for a sample run, is shown in
Fig. 7 and confirms the previous conclusions.

B. Simulation With Spatio-Temporal Noise

We try to estimate two functions:
and

in the range , from 100 samples corrupted by a
spatio-temporally correlated Gaussian noise

and

for

where

and with where

and .
The functions are chosen intentionally to be sure that a four
hidden unit network (with tangent hyperbolic activation) can
exactly approximate them. Thus, the noise will be the most im-
portant factor influencing the estimation quality and the com-
parison of our method with the OLS method becomes easier.
The jointly Gaussian white noise samples are produced
by generating two independent Gaussian sequences with mean
zero and variance and using

.
We use a one-hidden layer MLP with tangent hyperbolic acti-

vation function, with four units in the hidden layer. The ML esti-
mation is obtained by minimizing (27) using a gradient descent
algorithm. Thus, the gradient of this function which contains 23
components (18 network weights and five noise parameters) is
computed. Two important problems should be considered here.

1) The descent trajectory may reach regions of the parame-
ters space where the arguments of the logarithmic terms

(a)

(b)

(c)

Fig. 7. Comparison of the estimations obtained by GLS, two-stage and ML
methods with OLS estimation. In each figure, the solid line represents the target
function, the points its noisy samples, the dashed line the OLS estimation and
the dotted line represents (a) GLS estimation, (b) two-stages estimation, and
(c) ML estimation.

of (27) are negative. It causes typically an execution error
and the search procedure crashes. A good remedy is a
variable change strategy which guarantees that the numer-
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Fig. 8. The result of a sample run for a two-output system. Target functions (solid lines), noisy samples (dots) and the network approximations (dashed lines) by
OLS and ML algorithm.

ical search always stays within certain specified bound-
aries. In our problem, we choose

It can be easily shown that the above changes lead to:
and

so that and in (26) are posi-
tive. Thus, the new parameter vector contains the network
weights plus and .

2) Our experiences show that the gradient values for the net-
work weights and the noise parameters have not the same
order of magnitude and choosing a fixed learning rate for
all the parameters may slow down the algorithm or lead
to divergence. To avoid this problem, we used the conju-
gate gradient method which finds the optimal value of the
learning rate using a line minimization algorithm.

The experiment consists of ten runs, each run corresponding
to a different noise seed value [31]. To evaluate the results, an-
other network is trained using the OLS algorithm. The results
are given in Table I, where performance is evaluated as the dis-
tance between the noiseless target signal and the estimations:

, which may be used as
the test error. As it can be seen, the networks trained by our al-
gorithm have a better performance in generalization, thanks to
the noise modeling. As shown in Fig. 8, it is clear that the OLS
estimation has a tendency to follow the noisy data, which leads
to a good performance on the training data but a weak general-
ization capacity.

C. Stopping Criterion in Constructive MLP

In the third experiment, we would like to use the method to
whiten the estimation residual in a constructive approach and to

TABLE I
SIMULATION RESULTS FOROUR ALGORITHM (ML) AND ORDINARY LEAST

SQUARE ALGORITHM (OLS)

use the result as a stopping criterion. The experiment consists in
estimating the function using
100 samples corrupted by a first-order autoregressive stationary
Gaussian noise, with the correlation coefficient and
the noise variance . The noise and its correlation
function are shown in Fig. 9(a). The network was constructed
using the approach mentioned in [16], using a single hidden
layer MLP with linear output. At each step of the network con-
struction, the residual of the current network approximation is
computed and a single neuron is trained to estimate it. After-
wards, the output of this neuron is added to main network output
and the whole network is trained shortly to find the optimal
parameters in the new weight space. The network training is
done to minimize (45). The method explained in Section IV is
used for whitening the residual during the network construction.
After adding five units in the hidden layer, the stopping criterion
is satisfied. The final whitened residual and its correlation func-
tion are shown in Fig. 9(b). Fig. 9(c) illustrates the approxima-
tion result. The estimated values forand are, respectively,
0.8803 and 0.0061. The above experiments have been repeated
with different initial values with practically similar results.
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(a)

(b)

(c)

Fig. 9. ML estimation in presence of correlated noise. (a) Simulated autoregressive noise and its correlation function. (b) Final whitened residualand its correlation
function. (c) Target function (solid line), its noisy samples (dots) and the network approximation (dashed line).

D. Experience With Real Data

Our last experiment consists in applying our algorithm to a
real-world problem. One wishes to model the variation of the
blood pressure of a patient as a function of his corporal acceler-
ation and his heart rate. For each patient, one has two series of
recordings, each one over 24 h and separated by at least a week.
One of the two series can be used as the training base and the
other as the test base. See [32] and [33] for additional informa-
tion on the conditions of recording and the applications.

Unfortunately, for most of the patients, data are not collected
at regular time intervals so that our proposed methods cannot
be directly applied. We are currently working to generalize the
methods for irregular sampled data. However, we present here
the results for a patient whose training data are nearly regularly
sampled.

To determine the optimal number of neurons in the network
hidden layer, we could use a constructive algorithm. However,
since the constructive approaches may lead to suboptimal so-
lutions, and our principal objective is to compare the optimal
solutions obtained by ML and OLS methods, we preferred to
use a trial and error approach, especially as we have a test data

set. Thus, the networks containing one to ten hidden neurons are
trained by training data8 and using OLS algorithm. For each net-
work, the test error is evaluated using test data. The network pro-
viding minimum test error has four hidden units. The residual
of this network estimation (as a function of time) and its au-
tocorrelation function are presented in Fig. 1. The existence of
the temporal correlation in the residual can be due to the influ-
ence of unknown temporally correlated sources (stress, feeding,
activities, ) and can be explored by ML method to improve
the estimation. Afterwards, the networks with one to ten hidden
units are trained using ML algorithm to minimize the cost func-
tion (45), supposing a first-order autoregressive Gaussian noise
model. Once more, the network with four neurons provides the
best generalization performance.

Training and test errors for the ten networks are given in
Table II. Fig. 10 represents the variation of blood pressure and
its estimations by OLS and ML methods as functions of loga-
rithm of corporal acceleration and heart rate for the networks
with four hidden units. The extremely noisy nature of data can
be remarked in this figure. The results confirm the better quality

8Data are first centered and divided by their standard deviation.
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(a) (b)

(c) (d)

(e) (f)

Fig. 10. Variation of blood pressure as a function of heart rate and logarithm of corporal acceleration, and its projections on two axes. (a), (c), and (e) OLS
estimation. (b), (d), and (f) ML estimation. The points represent real data. The estimations are represented by the circles in (a) and (b), and by the solid lines in
the other figures.

of ML estimator in generalization. Since OLS estimator learns
better the noise structure, it is natural that it has a better perfor-
mance on the training data.

VI. DISCUSSION

In this paper, we addressed the problem of nonlinear regres-
sion using MLP with more realistic hypotheses about noise. In

particular, we studied the case of spatio-temporally correlated
Gaussian noise with autoregressive temporal structure and we
showed that using a maximum likelihood approach, the noise
parameters may be estimated simultaneously with the MLP
weights during the training. It is shown that the generalization
performance can be improved using this method.

A multioutput system can be modeled by either a MIMO
MLP or several separate MISO MLP. Although the training of
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TABLE II
TRAINING AND TEST ERRORS FOREACH OF OLS AND ML ESTIMATORS AS

FUNCTIONS OF THENUMBER OF HIDDEN NEURONS(N)

several MISO networks seems simpler and does not require
to take into account the spatial correlation of the noise, we
studied the more general case of MIMO network modeling
and showed that the spatial correlation of the noise must be
explored in such a case to achieve a maximum likelihood
estimation. Anyway, in the absence ofa priori information
about the problem, it seems more reasonable to use several
MISO networks.

Although the approach is useful even with fixed size MLP, it
is still more interesting when applied together with a network
construction scheme. In this case, the estimated noise parame-
ters can be used for whitening the residual and for providing a
stopping criterion able to control the network development.

Although in this paper MLP are considered, the method
may be used with other universal approximator structures
like radial basis functions (RBFs) [34]. Our hypotheses about
the noise properties may seem restrictive but they are rather
realistic, since any linear system can be modeled using an
autoregressive structure. If the noise is non-Gaussian but with
a known probability density function, the ML approach is still
applicable. In practice, the noise may be also nonstationary. As
an example, in many instrumentation devices the noise power
increases with the signal amplitude. In [35], we have studied
the special case of independent Gaussian noise with a variance
function of the output , and we have shown that, based
on a parametric model of which is itself estimated, the
estimation may be improved. However, the more general case
of correlated nonstationary noise may be the subject of further
studies.

More investigations seem necessary to study the convergence
of the solutions. In the general case, it is necessary that the esti-
mation of the spatial covariance matrixbe nonnegative defi-
nite and the estimations of the temporal correlation matrices
satisfy the conditions of stationarity and causality expressed by
(10). But, are these conditions sufficient? The question merits
more studies.

Finally, everywhere in this paper, we supposed that data were
collected at regular time intervals. Further studies seem nec-
essary for generalizing the method for irregular sampling or
missing data values and for applying the method for any actual
data. Currently, our investigations are focused on the problems
pointed out in the three last paragraphs.

APPENDIX

COMPUTATION OF AND FOR AR2 MODEL

Multiplying the main autoregressive equation

(48)

by and , and taking the mathematical
expectation of the results, we obtain the following system of
equations:

(49)

Using the symmetry of and

(50)

Replacing in two first equations of (49), is eliminated and
after simplifying, we obtain

(51)

Using matrix to vector operations and the Kroneker product
properties, we can write

(52)

which can be simplified to

(53)

and leads to

(54)

with and as defined by (35) and (36).
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