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Maximum Likelihood Neural Approximation in
Presence of Additive Colored Noise

Shahram Hosseini and Christian Juft@ssociate Member, IEEE

Abstract—When multilayer perceptrons (MLPs) are used for errors, on the other hand. This uncertainty is usually modeled by
nonlinear regression, it is generally supposed that output data additive zero-mean random terms
are corrupted by additive independent and identically distributed
(i.i.d.) noise and the ordinary least square method is usually used yr = fu(wy, z2,. .. 2p) + &
to estimate the network weights. However, in many practical ElG]=0, k=12 M 2)
situations, the noise samples may be correlated. In this case, the
estimation of noise parameters can be used to improve the ap- which implies directly
proximation. Estimation of the noise structure can also be used to
find a stopping criterion in constructive neural networks. To avoid Elyx | w1, 22,...,2p] = fr(w1,22,...,2p)
overfitting, a network construction procedure must be stopped k=1,2,....M. (3)
when residual can be considered as noise. The knowledge on the R
noise may be used for “whitening” the residual so that a correla- Usually, the variables evolve according to another independent

tion hypothesis test determines if the network growing must be variablet, which can for example correspond to time. In prac-
continued or not. In this paper, supposing a Gaussian noise model, i-a only a limited number of samples of these variables asso-

we study the problem of multi-output nonlinear regression using . . - .
MLP when the noise in each output is a correlated autoregressive ciated to various values ofare available which form the data

time series and is spatially correlated with other output noises. We Dase.

show that the noise parameters can be determined simultaneously A typical nonlinear regression problem using MLP can so be
with the network weights and used to construct an estimator with  presented as following. Given/é-size data set

a smaller variance, and so, to improve the network generalization

performance. Moreover, if a constructive procedure is used to (xi,yi) = (%, T(xi) + &), i=1,..N 4)
build the network, the estimated parameters may be used to stop

. ; ; P .
the procedure. wherex; are samples of the input variable € R*,y; are

. o . ~ samples of the output variabje € R™ and¢; represent the
hog‘geeﬁtﬁgﬁgﬁﬂﬁgfng&ﬁkfenera"zat'on’ maximum likeli-  output noise, one wants to find a good approximation of the
’ : vector functionf(-). The noise is thus defined as the part of
y which does not depend aa Supposind( - ) a continuous
|. INTRODUCTION and bounded function, the universal approximation theorem of
e%ybenko [2] guarantees thi¢- ) can be approximated with an
earbltrary precision using a suitable size single h|dd_en layer MLP
wshose output can be written géx, W*) whereW* is the op-
I1imal weight matrix. In other words, for adl > 0, there exists a

N statistics, it is often desirable to find a relation betwe
a group of variables. In general, some of these variabl
calleddependent variablesr output variableor responsegde-

noted byy1,¥2, - - -, ¥y, are of a particular interest. The othe . . . 5

variablesry, z2, . . .,z p, calledindependent variablesr input single hidden layer MLP with weight matriw™, so that
variablesor regressorsare used to predict or to explain the be- llg(x, W*) — f(x)|| < 6. (5)
havior of 41,4, ..., ya- The relation is expressed using th . . .

functionsfi, f2,..., fu Gf_etg(x, W*) be the output of a single hidden layer MLP con-

taining R sigmoidal neurons and satisfying (5) for a desired,
sufficiently small value of6 which allows replacind’(x) by
Y = fr(z1,29,...,2p), k=1,2,....M. (1) glx, W*)in (4). In this case, (4) may be rewritten as

(xi7Yi) = (xivg(xi7W*) +£z)7 = 17 7N (6)

posez(x, W) represents the output of the class of single
den layer MLP containing? sigmoidal neurons; denoting
(W) =y — g(x, W), we would like to optimizéW to obtain
the best approximator f&W *. When the noise samples, are
independent and identically distributed (i.i.d.), ordinary least
, _ , , square (OLS) estimation is usually used and gives a consistent
Manuscript received April 6, 2000; revised January 17, 2001 and August 29, .. . . . T
2001 estimator. It consists in minimizindors = ¢(W)*e(W)

The authors are with the Laboratoire des Images et des Signaux (UMR CNR&ere € is the vector containing all the samples of all the
5083, INPG, UJF), 38031 Grenoble, France (e-mail: hosseini@lis.inpg.fr;
chris@inpg.fr). 10ther error structures like multiplicative errors are sometimes considered
Publisher Item Identifier S 1045-9227(02)00357-0. [1].

This relation remains approximative because of the influencegf
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Fig. 1. Blood pressure modeling: Estimation residual and its autocorrelation function.

residual outputs. However, in many practical situations, tisésts in minimizingEgrs = ¢(W)TV~=1¢(W), V being the
noise samples may be correlated and/or non stationary. Saclse covariance matrix, provides a better parameter estimation
a case is shown in Fig. 1, in which one would like to modglL]. As V is basically unknown, we have to estimate it. A pos-
the blood pressure of a patient as a function of his corpomable strategy can be the following [4]: a first OLS estimation,
acceleration and his heart rate. The input and output samptesnputation of the residual, estimation¥éfusing the residual,
are collected during 48 h with a sampling perifid= 15 min. computation ofvV —! and final GLS estimation oW . Unfortu-
The OLS method is used to train the different single hidderately, this strategy cannot be used in practice. At first, unless
layer MLP corresponding to different number of neurons iwe have multiple measurementsfor the same inpug;, the es-
the hidden layer. This experiment shows that all the modetsnation of V will be impossible because &/ x N) x (M x
including the best of them according a performance estitaté]) symmetric matrix, witf{(M x N)2+(M x N))/2 indepen-
provide a temporally correlated residual (Fig. 1). One majent parameters, cannot be identified usigx N data sam-
conclude that this correlation is due to the unknown inpufdes. Moreover, the approximation error ¥fimplies a larger
influence (feeding, stress,) and cannot be removed usingerror in the computation of its inverse. Finally, for large training
only two known inputs. According to our definition of noise indata bases, the inverse computation is expensive and the opti-
(4), we can so conclude the existence of a temporally correlataization algorithm will be very time-consuming, unless the ma-
noise in the model. The question is: “may this correlation erity of the entries oV —! are zero. For these reasons, in prac-
used to improve the neural-network estimation?” Although thtice, we have to choose a pertinent and simple parametric noise
problem has not been intensively studied in the neural-netwartodel with few parameters so that the estimation of its param-
literature, statisticians, and automatic control researchers haters is very simple. Moreover, as the optimal network size for
considered it more. a given problem cannot generally be determimaepriori, the

It is well known in linear dynamic system identification thatbove two-stage estimator is not desirable and it is better to es-
the presence of the colored noise leads usually to a biased raate the noise parameters simultaneously with the system pa-
rameter estimation [3]. Many approaches have been proposacheters, for example using a maximum likelihood approach.
to obtain unbiased estimation which depends essentially on the we will see, this method is especially very efficient when
noise structure. The main strategy consists in identifying tleeconstructive procedure is used to build the network. In the
noise parameters simultaneously with the system parameterbtaerature of linear time series modeling, the case of temporal
order to obtain a whitened residual [3]. correlated noise is largely studied and two-stage and maximum

In statistics, the presence of colored noise has been largiéglihood estimators are derived [5], [6]. In the field of para-
studied. When the covariance matrix of the noise is known, theetric nonlinear regression, there are also a few similar works
well-known generalized least square (GLS) method which cofor single output systems where the output is corrupted by tem-

porally correlated noise [7]-[9]. A review of these works can be

2 test database is used to estimate the performance. found in [1, Ch. 6].
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Another frequent practical case [10], [11] is the case of M independent Gaussian noise sources
spatially correlated noise. This situation can be occurred whe l l ..... 1
a common noise source influences the different outputs of
system? The noises in different outputs can so be considere: | Spatial correlation (Z)
as the components of a multidimensional noise, defined by it m(t)l m(t)l nM(t)J'
covariance matrix (for a Gaussian noise). The knowledge o R rul AR
this matrix may be used to improve the system modeling. Filter1 | | Filter2 FilterM
Motivated by these works, we find interesting to study the ei(t) e] ... em(t)
more general case of spatio-temporal noise in a multioutpt (0 (L/ yit)
system, modeled by a multilayer perceptron, in order to reduc © System * A y2(t)
the variance of the estimator, and so, to improve the networ = f(.) D
XP(t) .......... A\ YM(t)

generalization capacity. Another motivation to address thit
problem is to find a stopping criterion for constructive neural-
network algorithms. In general, the optimal size of an MLRig. 2. Signal generating model.
for a given problem is unknown. A too small network cannot

learn the data with a sufficient accuracy (the corresponding-l-he noise model which we used is a joint Gaussi&limen-

estimator is biased), and a too large one leads to overfittigg, -, stationary white noise, filtered by gth-order autore-

(the correspondll_ng gstlmgtor has a large varlz?]nce)ﬁ and éh&%ssive filters (Fig. 2). The choice of autoregressive model sim-
to poor generalization. Constructive approaches have es considerably the computations and is not so restricting

used to solve this problem [12]-{15]. In these methods, 0@, ;s each stationary ARMA system can be modeled using
starts with a simple network and adds progressively new Unifs i inite_order AR model whose high-order terms may be ne-
until the network can fit the target function. The main proble lected

is to define a relevant stopping criterion which avoids a
uncontrolled network increase. One of the solutions proposgq
recently is to use the residual signal properties [16]: to avoid ) ) )
overfitting, the network growing procedure is stopped when SUPPOSE; in (4) are the samples of the mentioned spatio-
the residual can be considered as noise. If the system noiste[@poral correlated Gaussian noise and supposgthatV™)
ii.d., a simple correlation test on the residual can determiffeth€ output vector of a single hidden layer MLP providing

if it can be considered as i.i.d. noise or not. Evidently, if th@ Sufficiently accurate approximation 6¢x) so that the dif-
noise is not i.i.d., this criterion fails. As we will see, in thiderenceg(x, W*) — f(x) is negligible in comparison with the
case, prior knowledge on the noise or on the estimation of 181S€- In the following, we neglect this theoretical imprecision

characteristics can be used for “whitening” the residual so trfifid Suppose thdltx) can be exactly represented gz, W*).
the correlation test is still usable. Considering this remark, suppose we havé’ anput, M

This paper is organized as follows. In Section II, after th@UtPut system which can be represented using the following

problem statement for a spatio-temporal noise model, the g&juations:
eral maximum likelihood (ML) solution is proposed and two

Statement of the Problem

special cases (first- and second-order autoregressive noises) are y(t) = g(gx(t)’ W+ (7)
studied with more details. Section Ill describes the simplified .

t) = b E(t— t 8
case of single output network. In Section IV, a stopping crite- &) ; He-9+n(t) ®
rion for constructive neural networks by whitening the estima- n(t) ~ N(O =) 9)

tion residual is proposed. Section V describes the experiments.
A summary and discussion are given in Section VI.

where y(t) = [p1(t),...,ym()]¥ are the system out-

II. SPATIO-TEMPORAL CORRELATEDNOISE INMULTI-OUTPUT  PUuts, x(t) = [z1(t),...,zp(t)]" are the systemTinputs,
NEURAL NETWORKS gx(®), W) = [g:1(x(t),W"),...,gm(x(t), W")]" are
the neural-network outputs (approximations)t) = [£1(2),

As ment_ioned in the previous section, when the nqise covari- Ly ()]T are gth-order autoregressive stationary colored
ance matrix is unknown, we have to choose a pertinent PafRsises anch(t) = [na(t), ..., na(H)]" are jointly Gaussian

metric noise model and try to identify the parameters. In the f%hite noises WithE[n, (£)ni(t — §)] = o2 if j = 0; and zero
lowing, two kinds of noise correlation are investigated: autocofiherwise ands| (t)z (t)z i ’

. - . n;(t)n,;(t)] = o,;. 3 is the covariance matrix
relation between the successive noise samples of each OUth‘h(t) &; are the diagonal matrices, modeling #ta-order

and cross-correlations between the different output noises. 'Hlﬁoregressive structure &ft) andW* is the network optimal

time-series estimation problem, the first kind may be due tOV\?eights matrix that must be estimated. Denotjitig diagonal
filtering effect (temporal correlation) and the second one MAement of matrix®, by ¢:.., note that ifn;(t) is stationary,
be the effect of a common noise source on the different outp%t?t) is stationary and caugal if and only ifj[]_?]

J

(spatial correlation).

q
1= i, 7 #£0 V2| <1 (10)

3For example, an audio noise influencing many microphones. i—1
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Assuming thatV samples of the system inputs and outputs af@onditioning on a random variable means treating it as a deter-
collected at regular time intervals, we want to find the maximuministic constant. So, using (7)—(9)
likelihood estimator folW*, & = [®4,...,$,] andX. ] ] ]

The problem can be treated in two different manners. In €@ 1€ =1),....&(1 — )

the first approach, one can us¥ separate, independent 4 o
multi-input-single-output (MISO) networks for estimatifd ~N D @), (14)
outputs. In this case, since the matrigesare diagonal, each J=1
output only depends on one component of the nnig¢ (@) |yt —1),...,y(i —q))
q q
yi(t) = gr(x(t), W) + D[ (un(t — ) ~ N X6, W)+ @iE(i—4).Z |, (15)
=1 j=1

—on(x(t =), W)l +na(t).  (11) Denoting the estimation residual by
Thus, t_he s_patlal correlation of Fhe noise has no |nf|ugnce on (i, W) = y (i) — g(x(d), W) (16)
the estimation of the network weights, so that only the diagonal
elements of the covariance matBixhave to be estimated. If this whereg(x(i), W) is the network output for th&h observation
approach is chosen, the reader may go directly to the Sectionalld W is the actual network weights matrix, we obtain

of this paper, where the special case of temporally correla ) ) ) )

noise in the MISO networks is treated. }e@(o [y =1,y - W, 8 %) .
A second approach, however, consists in using a sole multi- 1 1 q

input—mul_ti-output (MIMO) networl_< for estimati_ng thiel out- = W exp | — e(i, W) — Z Die(i — 5, W)

puts. In this case, one has to consider the spatial correlation be j=1

tween the noise components and the estimation of the off-diag- .

onal elements ok becomes indispensable. Note that a MIMO 1| . i

network can generally be modeled with less parameters in com3<2 (i W) ; @i =, W)] ) (17)

parison withA/ separate MISO networks because some param-
eters (early layer weights for an MLP) can participate in the esfithus, (13) and (17) give the second right-side term of (12). The
mation of many outputs. The reduction in the number of pararfirst term is more difficult to obtain. The solution consists in de-
eters can be crucial if the outputs can be implemented by suagnposing it in conditional likelihood terms and in determining
of the same hidden neurons. On the other hand, the training efach term separately
MIMO network is generally more difficult because more param-
eters must be updated simultaneously. Consequently, the con-j:(Y(l)’Y(2)’ -y W, @, 3)
vergence problems are more probable to happenwiththe MIMO = F(y(1); W, @, %) - F(y(2) |[y(1; W, ®, %) ...
networks. Moreover, the use of a MIMO network makes the Fly(g)|y(1),...,¥y(g—1); W, ®.%). (18)
analysis of the complexity of the problem difficult: some out- , } )
puts may require many hidden neurons, whereas others may'b&1€ following, we study the two special cases of first- and
quasilinear functions of the inputs, but this will be concealed ffcond-order AR noisgz = 1 andg = 2. Higher order struc-
the weights of the MIMO network. tures could be identified similarly.

The choice between the two approaches _depends on gTeARl Model
treated problem. Anyway, as a theoretical point of view, the
study of the problem in its complete form (the second approach)in this case, (18) reduces t5(y(1); W, ®,X). Using (8)
is important. Thus, in the remaining of this section, the seco@d noting that(¢ — 1) is independent oh(t), we can write
approach is considered and the off-diagonal elements of t T T T T
matrix ¥ will be estimated. As®; are M x M diagonal hbe[e(t)e(t) J = @ Ele(t = 1)e(t —1)7]®1 + E[n(t)n(t)(l]é)
g}i;gg% Tﬁ/lli ?J\% _i Aj\f) /Zymgneeggﬁ dr:ritrg;r;rrf:eg?oDenotingE[c(t)c(t)T] by A and using the stationary properties

estimate. Let us write the likelihood function, decomposed f?f (%), (19) reduces to discrete-time Lyapunov equation{18]

two parts A=3 AT + 3. (20)
Fly(1),y(2),...,y(N); W, ®,3) Using matrix to vector operatovec(-) and the Kronecker
=F(y(1)...y(q); W, ®, %) product defined, respectively, by
Flylg+1) ...y [y(Q),...,¥(@); W, 2,%). (12)  vec(X)
The second part can be easily determined using = [211, %21, Tl T12 - T2y Ty Tram]
and

Flylg+1)...y(N) [y(1),...,¥y(¢); W, 2, %) AoB

I
= H f(y(i) | y(i - 1)7 ) y(i - q)); W. o, E)~ (13) 4For an AR1 model, the solution (23) may follow directly from (20). However,
i=q+1 the notations being used in the next section, we keep the details of the proof.
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allB alnB

anlB annB
wherem andn represent, respectively, the sizeXfindA, and
using the following propertyvec(AXB) = (BT @ A)vec(X),
we can obtain the vector equivalent of (20)

vec(A) = (®1 ® ®1)vec(A) + vec(X) (21)
which can be solved by
vec(A) = (I— &, @ &) tvec(Z). (22)

But, since®; is a diagonal matrix with diagonal entries,;
and A andX are the symmetric matrices with entrigs and
a;; respectively, it can be easily shown that

Uij

Nj= — T
1= priiduyy

(23)
Then, using
y(1) ~ N(g(x(1), W), E[e(1, W)e(1, W)T])

Fly(D);
e(1, W)

(24)
$,3) can be computed considering
(1) — g(x(1), W)

1
(2m)M/2|A[1/2

W,

Fly(1); W, ®,%) =

X exp<—%6(1,W)TAle(1,W)> . (25)

tha

121

C. AR2 Model
DenotingAy = Ele(t)e(t)T], A1 = Ee(t)e(t — 1)T] and
Ay = Ele(t)e(t — 2)T], we can compute (18). Using the pre-
vious section results, one can write
1

Fly(1); W, ®,3) = )T AG

X exp<—%e(1,W)TAole(1,W)> . (28)

The computation aF (y(2) | y(1); W, &, X) is more tricky. To
compute this function, we can computge(2, W) | e(1, W);
W,®,3) and replacee(1, W) and (2, W) by y(1) —
g(x(1), W) and y(2) — g(x(2), W), respectively. For this
purpose, we must determine the density function of the part of
(2, W) which is not predictable from(1, W)

F(e(2,W)|e(1, W); W, ®,3)

=F(e(2,W) —Te(1, W); W, ®,3) (29)
whereE[(e(2, W) — T'e(1, W))e(1, W)T] = 0, i.e.
I' = Ble(2, W)e(1, W) ][E[e(1, W)e(1, W) T 7
= AIAG (30)

Clearly,n{W) = ¢(2, W) — I'¢(1, W) is a Gaussian random
{/ector:n ~ N(0, E[n(W)n(W)T]). Its covariance matrix can
be computed as follows:
E[n(W)n(W)"] = E[(e(2. W) — Te(1, W))
X (2, W)T — (1, W)"T7)]
=Ao— A TT —TAT 1 TA Y.

Using (30) and considering th&t, is symmetric, a simplified

Taking the logarithm of (12), and using (13), (17), and (25), ““@quation can be obtained

log-likelihood function can be computed

1
Ly (y) = const — 3 log |A]

1
— (1L, W)TA (1, W)

2
- ol 4 S W)
=2
—®e(i — 1L, WIS (4, W)
_ (i — 1, W) (26)

After eliminating the constants, the maximum likelihood esti-

mation of the unknown matricé&¥’, @ andX may be obtained
by minimizing the following cost function:

T =log |A| + (1, W)TA™!
X (1, W)+ (N — 1) log |X|

D[l W) = Brci — 1 W))”

X B7Ue(i, W) — ®1e(i — LW (27)

Notice that the number of independent parameters of (27) is

dim(W) + (3M + M?)/2.

5, — 2
0 = 0.

Elp(W)n(W)T] = Ao — AAG AT (31)
Finally, using (30) and (31)
Fly(2)y(1): W, ‘1>1, %)
T (20)M2|Ag — AJA AT
x exp(—% (e(2, W) — Ay AT e(1, W) T
x (Ao — AJ AT AT) T (e(2, W)
— A1A (1, W) ) : (32)

Once more, using the matrix to vector conversion and the Kro-
necker productAy andA; satisfy (see Appendix)

vec(Ag) = D™ vec(X) (33)
vec(A;) = Cvec(Ag) (34)
where
C=I1-2,0%,) 'I0®, +®,©P,) (35
D=I-2,0% -®2P, - P,0 P,
— (P20 P, + PP, @ P3)C. (36)

Using (13), (17), (28), and (32), taking the logarithm of (12)
and eliminating the constants, the maximum likelihood estima-
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tion of the unknown matrice®v, ®, and3 is obtained by min- Taking the logarithm of (41), using (42) and after eliminating
imizing the following objective function: the constant terms, maximizing the likelihood function reduces

finally to minimizing the following function:
T = log |Ao| + (1, W)TAale(l W) y g g
+log | Ao — AlelAT| + (e(2, W)

T -
R J = Nlog(oy) —log |Vt |+ — | /(W)TV1el(W)
— AATTL W) (Ao — ALATTAT) T (e(2, W) n

— AAG (1L, W) + (N —2)log |3 N g 2
. . + > [aW)=> ¢e (W) [ (43)
+ Z(C(Z’ W) - {116(1 -1, W) i=q+1 j=1
— Byc(i — 2, WIS He(i, W) Evaluation of this cost function requires the inversion of the

(g x q) matrix V.. Denoting(i, j)th entries of V' = v 1,
it is shown that [19]
in which there arelim(W) + (5M + M?)/2 parameters to q+i—j
estimate. Vgot Z Pebrrji — Y, Pkbrji
k=q+1—j
lll. A SIMPLIFIED CASE: SINGLE OUTPUT NETWORKS forl<i<j<gq (44)

The case of single output systems is interesting because sjfrere o, = —1. Values ofv—l for i > j can be inferred
pler cost functions can be extracted for an arbitrary-order Afom the fact thav, lig symmetnc For the special case of AR1
noise model. In this case, given a data set: process, it can be ea5|ly verified it = 1 — ¢ which im-

(xi,yi) = (i, f(x:) + &), i=1,...,N  (38) Plies

wherex; are the samples of the input variabless R”, col- 7, — N1og (62) —log (1 — ¢3) + i [(1 — ¢?) er(W)?
lected at regular time intervalg; = x(i7),y; are samples of on

the output variabley € ‘R and¢; are samples of a stationary

correlated noise, resulted from filtering an i.i.d. Gaussian noise + Z &(W) — 16,1 (W ))2] . (45)
n ~ N(0,02) by agth-order autoregressive filter

— Be(i — 1, W) — Boe(i — 2, W)) (37)

For an AR2 process, the (44) implies
& = Zd)jgi*j t i (39) v-l— < ( 1—¢3 —(p1 + </)1</>2)>

i 46
=t — (1 + P102) 1— 3 (46)
we want to find a good approximation of the underlying relatiorgng
ship f( -). Using the results of previous section, (17) reduces to J> = Nlog (03,) “log [(1 ) — dﬁ]
Flyilvit, o Yiiqg; W1, ..., g, 0, 1+
ilims o 9o Wb b 0n) 2 ~ 2loa(1+ 62) + 2 [(1— )
1 ~1 ! 2 s
= oo oz [ W) = DDty (W) (40) x <f1<W> + e2(W)?) = 20161 (W)e2(W)]
Z Pre;— 1(W) - ¢261—2(W))2-
where ¢,(W) represents the residual of the actual network. =3
Thus, using (12) and (13) the complete likelihood function is 47
written It can be easily verified that (45) and (47) are the special versions
Fyi, 92,y yni WL 1, o g, o) of (27) and (37) for single output systems.

=FW1,-- U W, 1, ., gy o) H IV. A STOPPINGCRITERION FORCONSTRUCTIVE NEURAL
iZgt1 V2T NETWORKS

2 In general, the optimal size of an MLP for a given problem

X exp __12 (W) — Z pici_i(W) . (41) is unknown. A too small network cannot learn the data with a
2 sufficient accuracy and a too large network leads to overfitting
and thus to poor generalization. Many approaches have been

Denoting ¢2V,, the covariance matrix ofe?(W) = proposed to determine dynamically the network size during
[e1(W),...,e,(W)]T i.e., theq first samples ofe(W) = training [20]-[23] and constructive algorithms are among the
v — g(x, W), we can write most promising [12]-[15], [24]. These algorithms grow dynami-
cally the size of the hidden layers until a satisfying performance
Fyis- 95 W, 15 -, b, m) is achieved. The problemisto define arelevant stopping criterion

which avoids uncontrolled network increase. This criterion may

|Vq_1 |1/2 -1
be based on a separate validation set [25], cross validation [26]

= (rozyaz TP\ 252

(eq(W)TVqleq(W))>. (42)
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Fig. 3. Target function (solid line) and its noisy samples (points) as functions of (a) time and (b) inputrs{gnaiiformly distributed random signal).

or bootstrapping [27]. It may also be obtained from a number &fan MA high-pass filter. If the signal part of the residual is low
information criteria like Akaike’s information criterion (AIC) frequency, it may be eliminated by the inverse filter so that the
[28], Bayesian information criterion (BIC) [29] or generalizedilter output is considered as white noise and a false stopping
prediction error (GPE) [30]. However, these methods eithdecision is made.

require additional data or are very time consuming.

Another solution proposed recently, inspired by the classical V. EXPERIMENTAL RESULTS
system identification tests, is to use the residual signal propertieaan thi i t . tal its with th
[16]. From (4) and (5), itis clear that an optimal neural-network. > Section, we present our experimental results wi ree

SR . . o simulation examples and a real-world problem.
approximation is achieved f(x, W) = f(x)i.e., if the error
samples arg; — g(x;, W) = &, i.e., if the residual can be
considered as noise. If noise sampdesre i.i.d., the stopping
criterion may consist in comparing the residual with such noise.In the first experiment, we study a simple, single output
In other words, denoting ;, the jth sample of théth residual model where only temporal correlation of noise is considered.
output, the criterion is nothing but a simple hypothesis tedfve would like to estimate the function
V/ﬂ,”kl 7§ O,E[c7‘,7jc7;+k7j+l] = OVGFSUSE[Q;J'Q;_F]CJ’_H] 7§ 0.
The correlation test determines if the residual can be considered f(z) = 0.5sin(3z), =z € [-0.5,05]
asnoise or not. Ifitis notthe case, one concludes that the residual ) ) )
still includes a part of the signal and the construction proceddfgnd @ single hidden unit MLP, frolV samples off (), cor-
mustbe continued. Evidently, ifthe noiseis noti.i.d., this criteriofyiPted by a first-order AR noise
fails and the algorithm may uncontrollably progress toward over- ,
fitting. In this case, prior knowledge on the noise or the estimate (@i, = flai) + &), 1€ [1,N]
of its characteristics can be used for “whitening” the residual. & =P+
Thus, the mentioned hypothesis tests would be still usable. o . )

Thus, the methods mentioned in the previous sections are a\@)ereﬁ. N.N(O’ o°) is a Gaussian, i.i.d. noise anq the sub-
useful to stop the construction procedure. At each step of tfﬁ(é”pt? |nd|ca_1tes a sa_mple collected at tinmé, 7 being the
network construction, using the maximum likelihood approacﬁ""mplmg period. The mput@ are thg se}mples of a temporal
the noise parameters are estimated simultaneously with the n P random sequence, uniformly distributed c_mO[.S, 0'.5]'
work weights. Then, these parameters are used to constru 1% 3(a) presents the signafee;) andy; as functions of time

— — |4 6 —
whitening linear filter. The residual of the neural-network est p:ujtéftu_relcg‘or;zs_e ig.gili?erzlgli é ]rVin t_helﬁAu?(S'F-Ii—heS((:g)r:ﬁLastt?gtes
mation is applied to this filter and a correlation hypothesis test%e q gure. F1g.

A. Temporally Correlated Noise in a Single Output System

applied to verify if the result can be considered as white noise.f: orrse?ggi(e;r?igsnﬁlost a; fug;::leo dnsdicr);:rlrml\sll)%hr:vgte\:fhEPee tﬂgsoe LS
thisis the case, the procedure is stopped; otherwise, it continués PP Y-

The procedure is very similar to linear system identification iWethOd needs only Fig. 3(b) (i.e., the couples 1)) to make

presence of colored noise where the noise inverse filter is igdf. estimation, Fig. 3(2) (the _order of coupleg in time) is also
tified during the system identification [3] necessary for an ML estimation. In the following, we compare

This technique, being very efficient in many cases, has uW—e performance of four different estimators for different values

fortunately its own drawbacks. Suppose we have an undersi?écfv’ ¢ andS/N.

network whose residual contains the correlated noise plus a parft) OLS estimator.

of the signal. Evidently, the whitening filter, which can be con- esjgnal-to-noise ratie= 10 log, ,(Es/ Ex), whereEs represents the signal
sidered as the inverse of the colored noise generating AR filtesyer andE  is the power of white noise;, before AR filtering.
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Fig. 4. (a) OLS estimation. (b) GLS Estimation. (c) Two-stages Estimation. (d) ML Estimation. In all the figures, the solid line represents tinedéogethe
points its noisy samples, and the dashed line the estimation.
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Fig. 5. Evolution of (a) the cost function and (b) the estimation of correlation coefficient of noise during ML training for example of Fig. 4.

2) GLS estimator. To realize this estimator, we use the tré®r each chosen tripleV, ¢ and .S/N, 10 experiences corre-
value of ¢. It should then provide the best performanceponding to different noise seed values are done. The result
among four estimators. A for a sample run corresponding fé = 100,¢ = 0.95 and

3) Two-stage estimator. This estimator uses the véles- S/N = 18.4 dB is shown in Fig. 4 for each of four estimators.
timated by OLS estimator for a second GLS estimationkor the same example, the evolution of the cost function in ML

4) ML estimator. This estimator minimizes the cost functioalgorithm and the evolution of the estimation of correlation co-
(45). efficient, ¢, during training is presented in Fig. 5. Fig. 6 presents
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Fig. 6. Mean (atleft) and standard deviation (at right) of the test error as functigndafN = 100 and S/N= 24.7 dB), NV (for ¢ = 0.95 and S/N= 24.7 dB)
and S/N (forgp = 0.99 andN = 50) for the algorithms OLS (solid line), GLG&--), two-stagg(-.-) and ML(. . .).

the mean and the standard deviation of test eéffimreach esti- estimators in generalization. This result is not surprising since

mator as functions o, N and.S/N. the GLS estimator knows exactly the correlation structure of
According to the figures, it is clear that the estimators GLBoise and the OLS estimator pays no attention to it. Among the

and OLS are, respectively, the best and the worst of the fawo others, estimator ML is the best for highly correlated noises

(great values op) and the worst for the lowly correlated noises.

7In all the simulation examples of this section, we mean by test error, the sUMporeover Fig. 6 shows that when all the estimations are very

of squared estimation errors with respect to the regression function, evaluated on ! ; . . .

a large number of inputs, different from those of the training set, in the dom##0d OF very bad, the difference of their performance is not con-

limited by the training set. siderable. Indeed, in absence of correlation (small valugg of
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or for the great training data bases, the noise structure has not
much influence on the estimatation. Consequently, all the esti-  osf
mators manage to follow the regression function. On the other
hand, when the correlation is too strong or the training data base
is too small, the distinction between the signal structure and the
noise structure is not easy and the estimation of MLP is so poor
that the knowledge on the noise structure will not be of much
use.

The four estimators are also compared on a more complicated
problem, i.e., the estimation of the function:

f(x) = 0.7sin(nz) cos(2mx)

using an MLP with five hidden units from 100 samples cor- )
rupted by a first-order AR noise ooz o4 o6 o8 1 T e s 2

(i yi = f(z) + &), i€ [l,N=100]
& = ¢bi1 +ni, =095

wheren ~ N(0,02 = 0.0044) is a Gaussian i.i.d. noise and

the inputsz; are the samples of an i.i.d. sequence, uniformly
distributed on[0, 2]. The result, for a sample run, is shown in

Fig. 7 and confirms the previous conclusions.

B. Simulation With Spatio-Temporal Noise

We try to estimate two functionsy; = 2tanh(z + 1) —
2tanh(22z — 1.5) andss = 3tanh(2z — 1) + 5 tanh(—3z + 1)
in the ranger €] — 5, 5], from 100 samples corrupted by a
spatio-temporally correlated Gaussian noise

y1(4) = s1(¢) + &%) ot s
{yQ(i) = (i) + &) D @) =01
fori € [1,100]

where

{51('5) = $1&1(i — 1) +na(2)
£2(1) = pabal(i — 1) + na(4)

2

and (n, (1), na(i)) ~ N(0,%) with & = (;112 (;122) where

b1 = 095,69 = 09,0, = 0.2,00 = 0.2 andoys = 0.024.

The functions are chosen intentionally to be sure that a four
hidden unit network (with tangent hyperbolic activation) can

exactly approximate them. Thus, the noise will be the most im-
portant factor influencing the estimation quality and the com-

parison of our method with the OLS method becomes easier.

s L 1 ! 2 L 2 2 )
[ 0.2 0.4 08 08 1 12 14 18 18 2

The jointly Gaussian white noise samples, n-) are produced : ' ' A

by generating two independent Gaussian sequences with mean (©

zero and variance : « ~ AN(0,1),5 ~ N(0,1) and using

ny = 0-09(204 + /3)7 na2 = 0-09(204 - /3) Fig. 7. Comparison of the estimations obtained by GLS, two-stage and ML

We use a one-hidden layer MLP with tangent hyperbolic actirethods with OLS estimation. In each figure, the solid line represents the target
vation function. with four units in the hidden |ayer The ML estijunction, the points its noisy samples, the dashed line the OLS estimation and
.. S - . CoL the dotted line represents (a) GLS estimation, (b) two-stages estimation, and
mation is obtained by minimizing (27) using a gradient descegf mL estimation.
algorithm. Thus, the gradient of this function which contains 23

components (18 network weights and five noise parameters) is
Computed. Two important problems should be considered here. of (27) are negative_ It causes typ|ca||y an execution error
1) The descent trajectory may reach regions of the parame- and the search procedure crashes. A good remedy is a
ters space where the arguments of the logarithmic terms  variable change strategy which guarantees that the numer-
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Fig. 8. The result of a sample run for a two-output system. Target functions (solid lines), noisy samples (dots) and the network approximatiditegjdshe
OLS and ML algorithm.

ical search always stays within certain specified bound- TABLE |
aries. In our problem, we choose SIMULATION RESULTS FOROUR ALGORITHM (ML) AND ORDINARY LEAST
SQUARE ALGORITHM (OLS)
12 = 0100 —— . 1 = b o= —— ML OLS
1+ |a|7 1+ |b|7 1+ |c| mean [ STD || mean | STD
It can be easily shown that the above changes lead to: test error || 63.11 | 24.90 || 73.98 | 35.00
0203 > 03y, (1 — ¢7)(1 — ¢3) = 0and(1l — ¢1¢p2)* > 1 083 | 0.13 || - -
(1 — ¢?)(1 — ¢2) so that|A| and|X| in (26) are posi- $2 081 | 007 || - -
tive. Thus, the new parameter vector contains the network 2 8'32 8'82 - -
weights plussy, 02, a, b, andc. T 005 004 - -

2) Our experiences show that the gradient values for the net-
work weights and the noise parameters have not the same
order of magnitude and choosing a fixed learning rate foise the result as a stopping criterion. The experiment consists in
all the parameters may slow down the algorithm or leasstimating the functiop = sin(5.52z — 0.5) cos(10z — 1) using
to divergence. To avoid this problem, we used the conja90 samples corrupted by a first-order autoregressive stationary
gate gradient method which finds the optimal value of th@aussian noise, with the correlation coefficignt = 0.8 and
learning rate using a line minimization algorithm. the noise variance? = 0.007. The noise and its correlation

The experiment consists of ten runs, each run correspondfagction are shown in Fig. 9(a). The network was constructed

to a different noise seed value [31]. To evaluate the results, aising the approach mentioned in [16], using a single hidden
other network is trained using the OLS algorithm. The resulayer MLP with linear output. At each step of the network con-
are given in Table |, where performance is evaluated as the ditruction, the residual of the current network approximation is
tance between the noiseless target signal and the estimati@esnputed and a single neuron is trained to estimate it. After-
> (@) — s1(8))? + (92(i) — s2(2))?, which may be used as wards, the output of this neuron is added to main network output
the test error. As it can be seen, the networks trained by our ahd the whole network is trained shortly to find the optimal
gorithm have a better performance in generalization, thankspgarameters in the new weight space. The network training is
the noise modeling. As shown in Fig. 8, it is clear that the OL&one to minimize (45). The method explained in Section IV is
estimation has a tendency to follow the noisy data, which leadsed for whitening the residual during the network construction.
to a good performance on the training data but a weak genevafter adding five units in the hidden layer, the stopping criterion
ization capacity. is satisfied. The final whitened residual and its correlation func-
tion are shown in Fig. 9(b). Fig. 9(c) illustrates the approxima-
tion result. The estimated values farando? are, respectively,

In the third experiment, we would like to use the method 18.8803 and 0.0061. The above experiments have been repeated

whiten the estimation residual in a constructive approach andwah different initial values with practically similar results.

C. Stopping Criterion in Constructive MLP
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Fig.9. ML estimation in presence of correlated noise. (a) Simulated autoregressive noise and its correlation function. (b) Final whitenaddésidagkelation
function. (c) Target function (solid line), its noisy samples (dots) and the network approximation (dashed line).

D. Experience With Real Data set. Thus, the networks containing one to ten hidden neurons are
Our last experiment consists in applying our algorithm to t&amed by training Qaﬁeand using O.LS algorithm. For each net-
real-world problem. One wishes to model the variation of th\gork, the test error is evaluated using test data. The network pro-

blood pressure of a patient as a function of his corporal accel}%q
ation and his heart rate. For each patient, one has two serie§ oﬁh

recordings, each one over 24 h and separated by at least a w oeqerrelation function are presented in Fig. 1. The existence of
One of the’two series can be used as the training base and etemporal correlation in the residual can be due to the influ-

other as the test base. See [32] and [33] for additional informaqce (.)f unknown temporally correlated sources (stres.s, feeding,
tion on the conditions of recording and the applications. activities, . .) and can be explored by ML method to improve

Unfortunately, for most of the patients, data are not coIIectéIae estimation. Afterwards, the networks with one to ten hidden

at regular time intervals so that our proposed methods caanftS are trained using '.V”‘ algorithm to minimize the co§t func_-
tgpn (45), supposing a first-order autoregressive Gaussian noise

be directly applied. We are currently working to generalize th del. O th twork with f ides th
methods for irregular sampled data. However, we present h €l. once more, the nework with four neurons provides the
st generalization performance.

the results for a patient whose training data are nearly regula e . .
Training and test errors for the ten networks are given in

sampled. . o
P . . . Table II. Fig. 10 represents the variation of blood pressure and

To determine the optimal number of neurons in the network S !
. . . Its estimations by OLS and ML methods as functions of loga-
hidden layer, we could use a constructive algorithm. However .
. . . rithm of corporal acceleration and heart rate for the networks
since the constructive approaches may lead to suboptimal so-

. o o . with four hidden units. The extremely noisy nature of data can
lutions, and our principal objective is to compare the optim

solutions obtained by ML and OLS methods, we preferred e remarked in this figure. The results confirm the better quality

use a trial and error approach, especially as we have a test daimata are first centered and divided by their standard deviation.

ing minimum test error has four hidden units. The residual
is network estimation (as a function of time) and its au-
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estimation. (b), (d), and (f) ML estimation. The points represent real data. The estimations are represented by the circles in (a) and (b), alidiImethim so
the other figures.

of ML estimator in generalization. Since OLS estimator learrmarticular, we studied the case of spatio-temporally correlated
better the noise structure, it is natural that it has a better perf@aussian noise with autoregressive temporal structure and we
mance on the training data. showed that using a maximum likelihood approach, the noise
parameters may be estimated simultaneously with the MLP
weights during the training. It is shown that the generalization
performance can be improved using this method.

In this paper, we addressed the problem of nonlinear regresA multioutput system can be modeled by either a MIMO
sion using MLP with more realistic hypotheses about noise. MLP or several separate MISO MLP. Although the training of

VI. DISCUSSION
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TABLE I APPENDIX
TRAINING AND TEST ERRORS FOREACH OF OLS AND ML ESTIMATORS AS COMPUTATION OF An AND A1 FORAR2 MODEL
FUNCTIONS OF THENUMBER OF HIDDEN NEURONS(V) 0 L

Multiplying the main autoregressive equation

training error test error
N JOLS | ML [[OLS | ML e(t) = Pre(t — 1) + Pae(t — 2) + n(¢) (48)
1 053] 098 [ 1.44 | 1.19 . .
1040 | 103 197 121 by e(t)?, e(t — 1)T ande(t — 2)7', and taking the mathematical
3 || 046 | 1.03 || .43 [ 1.23 expectation of the results, we obtain the following system of
4 || 0.39 | 0.68 1.37 | 1.18 equations;
5 | 0.36 | 1.08 | 1.95 | 1.82
6 1034 068 || 1.69 | 1.66 Ao =P AT + ®,AT 4+ 3N,
7 [[030 ] 0.60 || 171|179 T
§ [[0.19 | 060 || 172 | 1.22 = D180 + 2241 Ay
9 | 0.18 0.68 1.36 | 1.72 =P A + PrAg. (49)
10 [ 0.15 | 073 || 1.68 | 1.67

Using the symmetry oA, 3, &, and ®-

T

several MISO networks seems simpler and does not require AlT B A(f)l AL,
to take into account the spatial correlation of the noise, we Ay = AL 21+ AP (50)
studied the more general case of MIMO network modelingeplacing in two first equations of (49). is eliminated and
and showed that the spatial correlation of the noise must &feer simplifying, we obtain
explored in such a case to achieve a maximum likelihood 5
estimation. Anyway, in the absence afpriori information Ao = 214081 + 1A By + P2A0 D)
about the problem, it seems more reasonable to use several + P2A1 PP + P2AP+ X
MISO networks. AL =P Ay + P AP + PA D5 (51)

Although the approach is useful even with fixed size MLP, it, . . . d the K K duct
is still more interesting when applied together with a networ%smg matrlx o vectqr operations and the Kroneker produc

. . . . operties, we can write

construction scheme. In this case, the estimated noise parame-
ters can be used for whitening the residual and for providing a vec(Ag) = (1 @ Py)vec(Ag) + (P2 ® B1)
stopping criterion able to control the network development. x vec(A1) + (@f ® ®y)vec(Ao)

Although in th|-s paper MLP are conS|de.red, the method (8.8, © Bo)vec(Ay)
may be used with other universal approximator structures
like radial basis functions (RBFs) [34]. Our hypotheses about + (22 ® ®a)vec(Ao) + vec(X)
the noise properties may seem restrictive but they are rather vec(Ay) = (T© ®y)vec(Ag) + (21 @ B7)
realistic, since any linear system can be modeled using an x vec(Ag) + (P2 @ P2)vec(Ay) (52)
autoregressive structure. If the noise is non-Gaussian but wit
a known probability density function, the ML approach is stiIYv
applicable. In practice, the noise may be also nonstationary. As— ®; @ &1 — &7 @ $> — P> @ $2)vec(Ao)
an example, in many instrumentation devices the noise power_ (B2 @ &) + P ®1 ® By)vec(A;) = vec(X)
increases with the §|gnal amplitude. In' [35], we hf';lve stuqll f_ B, © ®s)vec(Ar) = (10 B; + B, @ B2)vec(Ag) (53)
the special case of independent Gaussian noise with a variance
function of the outpub?(y), and we have shown that, based@nd leads to
ona pqrametric quel af?(y) which is itself estimated, the vee(Ag) = D Lyec(X)
estimation may be improved. However, the more general case

Hich can be simplified to

of correlated nonstationary noise may be the subject of further vec(Ay) = Cvec(Ao) (54)
studies. with C andD as defined by (35) and (36).

More investigations seem necessary to study the convergence
of the solutions. In the general case, it is necessary that the esti- ACKNOWLEDGMENT
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