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ABSTRACT

This paper demonstrates and exploits some interesting
frequency-domain properties of nonstationary signals. Con-
sidering these properties, a new method for blind separation
of linear instantaneous mixtures of mutually uncorrelated, non-
stationary, real sources is proposed which is based on spec-
tral decorrelation of the sources. It allows the existing time-
domain algorithms developed for stationary, temporally cor-
related sources to be applied to nonstationary, temporally un-
correlated sources just by mapping the mixtures into the fre-
quency domain. The method sets no constraint on the piece-
wise stationarity of the sources, unlike most of previously re-
ported methods.

1. INTRODUCTION

Linear instantaneous blind source separation consists in re-
covering unobserved source signals from several observed sig-
nals which are supposed to be linear instantaneous mixtures
of these source signals. It has been shown that this goal can
be achieved by exploiting nonGaussianity, time correlation or
nonstationarity [1], leading to numerous algorithms [2].

In this paper, our goal is to propose a new approach us-
ing the nonstationarity of the sources. A few authors have
studied this problem [3]-[6]. Many of these works use a sta-
tistical framework and take advantage of the assumed nonsta-
tionarity of the variance of the sources. In [3], separation of
nonstationary signals is achieved by computing output com-
ponents which are uncorrelatedat every time point, using a
recurrent neural network. In [4], the observed signals are di-
vided in two subintervals. Then, the joint diagonalization of
two covariance matrices, estimated on the two subintervals,
allows one to separate the sources. Another approach, pre-
sented in [5], is based on the maximization of the nonstation-
arity, measured by the cross-cumulant, of a linear combina-
tion of the observed mixtures. In [6], the authors develop
novel approaches based on the principles of maximum likeli-
hood and minimum mutual information.
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In most of these works, the estimation of the considered
statistics requires that they do not change within some inter-
vals. This means that the nonstationary sources are supposed
piecewise stationary with respect to the considered statistics,
while this hypothesis may not be realistic for many real-world
signals.

The statistical, frequency-domain method proposed in the
present paper is based on spectral decorrelation of the signals.
It results from some interesting frequency-domain properties
of nonstationary signals, and may be used for separating lin-
ear instantaneous mixtures of Gaussian or nonGaussian non-
stationary, mutually uncorrelated signals. The piecewise sta-
tionarity hypothesis is not required for the proposed method.

We should mention that frequency-domain methods have
been used for separating convolutive mixtures of nonstation-
ary sources (see for example [7]), but in a totally different
context which consists in transforming a convolutive time-
domain mixture into an instantaneous frequency-domain mix-
ture. Moreover, there exist several methods exploiting the
time-frequency diversity of the nonstationary sources for sep-
arating them [8]-[11].

2. PROBLEM STATEMENT

In a general framework (without noise and with the same
numbers of mixtures and sources), the blind separation of
instantaneous linear mixtures can be formulated as follows.
SupposeN samples ofK instantaneous mixtures ofK un-
knowndiscrete-timesources1 are available. The mixing model
is given by:

x(n) = As(n) (1)

wherex(n) = [x1(n), x2(n), · · · , xK(n)]T ands(n) = [s1(n)
, s2(n), · · · , sK(n)]T are, respectively, the observation and
the source vectors, andA is anunknownmixing matrix. We
suppose the sources are zero-mean, real signals, and the mix-
ing matrixA is real and nonsingular. The goal is to find an

1In this paper, we consider discrete-time signals because in practice one
deals usually with these signals. However, it must be emphasized that the
methods proposed in this paper can be used also for processing continuous-
time signals.



estimate of the matrixA (or its inverse, the separating matrix)
up to a permutation and a diagonal matrix. In the following,
we suppose also that the components of the source vectors(n)
in (1), i.e. the source signalssi(n), are mutually uncorrelated.
In other words, we suppose thatE[si(n1)sj(n2)] = 0 ∀i 6=
j, ∀n1, n2.

Let’s denote the Fourier transforms2 of si(n) andxi(n)
by Si(ω) andXi(ω), and defineS(ω) = [S1(ω), S2(ω), · · · ,
SK(ω)]T andX(ω) = [X1(ω), X2(ω), · · · , XK(ω)]T . Tak-
ing the Fourier transform of (1), we obtain:

X(ω) = AS(ω). (2)

Proposition 1:E[Si(ω1)S∗j (ω2)] = 0 ∀i 6= j, ∀ω1, ω2,
whereS∗(ω) is the complex conjugate ofS(ω).

Proof: See Appendix A.

The following corollary, results from Proposition 1, and
will be used in our method.

Corollary 1: The matrixPS(ω, υ) = E[S(ω+υ)SH(ω)],
whereSH denotes the Hermitian transpose ofS, is diagonal
for every value ofυ.

3. METHOD

Our method is based on the following theorem.

Theorem 1: If s(n) is a temporally uncorrelated, real,
zero-mean signal with a nonstationary varianceq(n), i.e. if
E[s(n1)s(n2)] = q(n1)δ(n1 − n2), whereδ(n) is the unit
impulse, then its Fourier transform,S(ω) is a wide-sense sta-
tionary, autocorrelated process with autocorrelationQ(υ),
which is the Fourier transform ofq(n), i.e.

E[S(ω + υ)S∗(ω)] = Q(υ) =
∞∑

n=−∞
q(n)e−jυn. (3)

Proof: See Appendix B.

Hence, if we suppose that the mutually uncorrelated
sourcessi(n) are real, zero-mean, temporally uncorrelated
and nonstationary with respect to their variances, then Propo-
sition 1, Theorem 1 and Equation (2) entail thatXi(ω) are lin-
ear mixtures of mutually uncorrelated, wide-sense stationary
and autocorrelated frequency-domain processesSi(ω). Many
algorithms have been proposed for separating such mixtures
[13]-[18]. Although these algorithms were originally devel-
oped for time-domain wide-sense stationary, time-correlated
processes, nothing prohibits us from applying them to frequency-
domain wide-sense stationary, frequency-correlated processes.
Thus, only by mapping the nonstationary temporally uncorre-
lated observed signals in the frequency domain, the source

2The Fourier transform of a discrete-time stochastic processu(n) is a
stochastic processU(ω) given byU(ω) =

P∞
n=−∞ u(n)e−jωn [12].

separation can be achieved using one of the numerous meth-
ods developed previously for time-correlated stationary mix-
tures.

A simple BSS algorithm which may be considered as a
frequency-domain variant of the time-domain AMUSE algo-
rithm [14] consists in jointly diagonalizing the two matrices
PX(ω, 0) = E[X(ω)XH(ω)] andPX(ω, υ1) = E[X(ω +
υ1)XH(ω)] for some frequency lagυ1. The joint diagonal-
ization may be achieved using generalized eigenvalue decom-
position as the following theorem suggests.

Theorem 2:Supposesi(n) are K mutually uncorrelated
zero-mean signals. Suppose also there is a constantυ1 such
that∀i 6= j

E[Si(ω + υ1)S∗i (ω)]
E[|Si(ω)|2] 6= E[Sj(ω + υ1)S∗j (ω)]

E[|Sj(ω)|2] . (4)

If V is a matrix whose columns are the eigenvectors of
PX(ω, 0)−1PX(ω, υ1), i.e. if

PX(ω, 0)−1PX(ω, υ1) = VΛV−1 (5)

whereΛ is a diagonal matrix3, thenV = DPAT−1
, where

D is a diagonal matrix andP is a permutation matrix.
Proof: See Appendix C.

An inverse theorem can be formulated as follows.

Theorem 3: Suppose∃i 6= j such that

E[Si(ω + υ1)S∗i (ω)]
E[|Si(ω)|2] =

E[Sj(ω + υ1)S∗j (ω)]
E[|Sj(ω)|2] (6)

for a given frequencyω and a constantυ1. Then, the eigen-
value decomposition (5) atυ1 does not give the matrixA up
to a permutation and a diagonal matrix.

Proof: See Appendix D.

Following Theorem 1, if two sourcessi(n) andsj(n) are
temporally-uncorrelated, real, zero-mean signals with nonsta-
tionary variancesqi(n) and qj(n), then the numerators and
the denominators in (4) are the Fourier transforms of these
variances at the frequenciesυ1 and zero. Thus, the sources
may be separated only if they have different variance profiles.

Since the processesSi(ω) and thereforeXi(ω) are wide-
sense stationary, we can hope they are also wide-sense er-
godic, so that the expected values can be estimated by fre-
quency averages. In this case, the proposed BSS algorithm
reduces to jointly diagonalizing the two sample covariance
matricesP̂X(ω, 0) =

∑
ω X(ω)XH(ω) and P̂X(ω, υ1) =∑

ω X(ω + υ)XH(ω).

3In fact, the diagonal entries ofΛ are thegeneralized eigenvaluesof the
two matricesPX(ω, 0) and PX(ω, υ1), and the columns ofV are the
generalized eigenvectorsof these two matrices, becausePX(ω, υ1)V =
PX(ω, 0)VΛ.



Note also that, similar to the time domain algorithm, the
diagonalization may be done serially,i.e. by first whitening
data which is equivalent to diagonalizingPX(ω, 0) and then
by computingPX(ω, υ1) on the whitened data and diagonal-
izing it using a unitary matrix.

The constantυ1 may be chosen by plotting the empirical
autocorrelations of the sequencesXi(ω) and by choosing a
frequency lag ensuring (4). Unlike in the temporal method,
the choiceυ1 = 1 is not always the best. A good idea is to
choose a nonzero value ofω maximizing the autocorrelation
function. An extended version of the proposed method, which
may improve the separation performance too, is to simultane-
ously diagonalize several covariance matrices corresponding
to several frequency lags, which can be considered as a fre-
quency domain equivalent of the SOBI algorithm [13]. We
will come back to these points in the following section.

4. SIMULATION RESULTS

In the first experiment, we considered the two sources shown
in Figure 1, which were obtained by multiplying two indepen-
dent Gaussian i.i.d. signals, respectively by a sinus and by a
periodical triangle, both of frequencyf0 = 8Hz. The mixing

matrix isA =
(

1 0.9
0.8 1

)
.
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Fig. 1. The two sources used in the first experiment.

The experiment was done using 1 second of the two sources
containing 8192 samples. The absolute value of the auto-
correlation function ofX1(ω) is shown in Figure 2 which
presents three main peaks atυ = 0 andυ = ±16Hz (this can
be demonstrated easily by computing the autocorrelations of
the two sources and by using the result of Theorem 1). The
separating matrix may be estimated by applying the method
mentioned in the previous section choosingυ1 = 16Hz.

We used a modified version of the AMUSE algorithm [14]
for this purpose. This simple and fast algorithm, originally
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Fig. 2. Absolute value of the Autocorrelation function of
X1(ω).

developed for separating time-correlated stationary sources in
the time domain, here works as follows. (a) Spatially whiten
the dataX(ω) to obtainZ(ω). (b) Compute the eigenvalue
decomposition of the symmetric matrixCZ

υ1
= 1

2 [Cυ1+CT
υ1

],
whereCυ1 = E[Z(ω + υ1)Z∗(ω)] is the covariance matrix
corresponding to lagυ1. (c) The rows of the separating matrix
B are given by the eigenvectors ofCZ

υ1
.

The experiment was repeated 100 times corresponding to
100 different seed values of the random variable generator.
For each experiment, the output Signal to Noise Ratio (in dB)

was computed bySNR = 0.5
∑2

i=1 10 log10
E[s2

i ]
E[(ŝi−si)2]

, af-
ter normalizing the estimated sources,ŝi(n), so that they have
the same variances and signs as the source signals,si(n). The
mean and the standard deviation of SNR on the 100 experi-
ments were 51.8 dB and 5.9 dB .

Other experiments with different profiles of nonstationary
variance for the sourcess1(n) ands2(n) led to similar results.

In the second experiment, the above algorithm based on
AMUSE was used for separating mixtures of speech signals.
Three tests using three couples of 44100-sample speech sig-
nals led to an average SNR of 40.6 dB. A modified algorithm
aiming at joint diagonalizing several covariance matrices cor-
responding to several frequency lags (which may be consid-
ered as a frequency equivalent of the SOBI algorithm) was
also used for separating the same speech signals, and led to
an average SNR of 46.7 dB.

This experiment shows that although Theorem 1 is de-
rived for temporally uncorrelated signals, the proposed method
works well also for temporally correlated signals.



5. CONCLUSION

A major objective of this paper was to demonstrate and ex-
ploit some theoretically interesting frequency-domain prop-
erties of signals which are nonstationary in the time domain.
These properties provide sufficient second-order constraints
in the frequency domain for separating instantaneous linear
mixtures of nonstationary sources.

A separating method was proposed based on these prop-
erties. This method is very simple and powerful because it
allows the time-domain algorithms developed for stationary
time-correlated signals to be applied to temporally uncorre-
lated sources which are nonstationary in the time domain, just
by mapping the signals in the frequency domain. It should be
remarked that this algorithm does not require the variance of
the sources to be constant over subintervals, while this hy-
pothesis is necessary in the majority of the source separation
algorithms based on the nonstationarity of variance which
have been reported in the literature.

A. PROOF OF PROPOSITION 1

Consider two mutually uncorrelated zero-mean real signals
si(n) andsj(n), with Fourier transformsSi(ω) andSj(ω).
We can write:

E[Si(ω1)S∗j (ω2)] =
∞∑

n1=−∞

∞∑
n2=−∞

E[si(n1)sj(n2)]e−j(ω1n1−ω2n2) = 0

becauseE[si(n1)sj(n2)] = 0 ∀n1, n2.

B. PROOF OF THEOREM 1

A processS(ω) is wide-sense stationary if its expected value
is constanti.e. E[S(ω)] = η and if its autocorrelationE[S(ω+
υ)S∗(ω)] is not a function ofω i.e. E[S(ω + υ)S∗(ω)] =
Q(υ).

1) s(n) is supposed zero-mean. Hence

E[S(ω)] =
∞∑

n1=−∞
E[s(n)]e−jωn = 0

2) If E[s(n1)s(n2)] = q(n1)δ(n1−n2), whereδ(n1−n2) is
a unit impulse, then

E[S(ω + υ)S∗(ω)]

=
∞∑

n1=−∞

∞∑
n2=−∞

E[s(n1)s(n2)]e−j(ω+υ)n1ejωn2

=
∞∑

n1=−∞

∞∑
n2=−∞

q(n1)δ(n1 − n2)e−jω(n1−n2)e−jυn1 .

Sinceδ(n1 − n2)e−jω(n1−n2) = δ(n1 − n2),

E[S(ω + υ)S∗(ω)]

=
∞∑

n1=−∞
q(n1)e−jυn1

∞∑
n2=−∞

δ(n1 − n2)

=
∞∑

n1=−∞
q(n1)e−jυn1 = Q(υ).

C. PROOF OF THEOREM 2

From (2), we have

PX(ω, υ1) = APS(ω, υ1)AH = APS(ω, υ1)AT (7)

and

PX(ω, 0) = APS(ω, 0)AH = APS(ω, 0)AT (8)

becauseA is real. IfPS(ω, 0) is nonsingular,i.e. if E[|Si(ω)|2]
6= 0 ∀i, then left multiplying (7) by the inverse of (8) yields

P−1
X (ω, 0)PX(ω, υ1) = AT−1

P−1
S (ω, 0)PS(ω, υ1)AT .

(9)
Since according to Corollary 1P−1

S (ω, 0)PS(ω, υ1) is a di-
agonal matrix, the above equation is nothing but an eigen-
value decomposition of the matrixP−1

X (ω, 0)PX(ω, υ1). If
theK eigenvalues are distinct (i.e. if the algebraic multiplic-
ity of each eigenvalue equals one), then the dimension of the
eigenspace corresponding to each eigenvalue equals one (see
[19]-page 58). In other words, ifv andu are two eigenvec-
tors corresponding to the same eigenvalueλ, thenu = αv
whereα is a (complex) scalar. Moreover, it is clear that the
eigenvalues may be arranged as diagonal entries of a diagonal
matrix in an arbitrary order.

Hence, if the matrixP−1
X (ω, 0)PX(ω, υ1) hasK distinct

eigenvalues,i.e. if E[Si(ω+υ1)S
∗
i (ω)]

E[|Si(ω)|2] 6= E[Sj(ω+υ1)S
∗
j (ω)]

E[|Sj(ω)|2] ∀i 6=
j, and if VΛV−1 is an eigenvalue decomposition ofP−1

X

(ω, 0)PX(ω, υ1), then the columns ofV are equal to the
columns ofAT−1

up to a scaling factor and a permutation,
so thatV = DPAT−1

, whereD is a diagonal matrix andP
is a permutation matrix.

D. PROOF OF THEOREM 3

If λ = E[Si(ω+υ1)S
∗
i (ω)]

E[|Si(ω)|2] = E[Sj(ω+υ1)S
∗
j (ω)]

E[|Sj(ω)|2] , thenP−1
X (ω, 0)

PX(ω, υ1) has two identical eigenvaluesλ. SinceA is sup-
posed nonsingular, the columns ofAT−1

(which represent the
eigenvectors ofP−1

X (ω, 0)PX(ω, υ1)) are linearly indepen-
dent. Hence, the eigenspace corresponding toλ, and spanned
by two columns ofAT−1

, is of dimension 2. It is well known
that every nonzero element of this eigenspace is an eigenvec-
tor corresponding toλ (see [19]-section 1.4). Therefore, the
two columns ofAT−1

corresponding toλ can not be identi-
fied up to a permutation and a scaling factor using the eigen-
value decomposition (5).
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