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Abstract. In linear mixtures, priors, like temporal coloration of the
sources, can be used for designing simpler and better algorithms. Espe-
cially, modeling sources by Markov models is very efficient, and Markov
source separation can be achieved by minimizing the conditional mu-
tual information [1, 2]. This model allows to separate temporally colored
Gaussian sources. In this paper, we extend this result for post-nonlinear
mixtures (PNL) [3], and show that algorithms based on a Markov model
of colored sources leads to better separation results than without prior,
i.e. assuming iid sources. The paper contains theoretical developments,
and experiments with auto-regressive (AR) source mixtures. PNL al-
gorithms for Markov sources point out a performance improvement of
about 7dB with respect to PNL algorithms for iid sources.

1 Introduction

First blind source separation methods, based on statistical independence of ran-
dom variables and using higher (than 2) order statistics, does not take into ac-
count the temporal relation between successive source samples. However, early
works [4, 5, 6, 7] show that it is possible to exploit source temporal correlation
by considering simultaneously a few variance-covariance matrices, with various
delays. In recent works [1, 2], for linear mixtures, we proposed Markov models
of the sources for taking into account the temporal relation between samples.
In this paper, we generalize the method to post-nonlinear mixtures (PNL). The
paper is organized as follows: Section 2 provides the main theoretical founda-
tions, Section 3 details two practical issues of the algorithm, Section 4 reports
the experiments, before the conclusions in Section 5.

? This work has been partly funded by the European project BLind Source Separation
and applications (BLISS, IST-1999-14190).



2 Theoretical assessments

2.1 Mixing and separating models

Post-nonlinear (PNL) mixtures of n sources, represented by the figure 1, are
characterized by a linear instantaneous mixtures, associated to a mixing matrix
A, followed by component-wise nonlinear distortions fi. Considering a suited
separating structure (Fig. 1, right side), it can be shown [3] that, under mild
conditions3, output independence leads to source separation, with the same inde-
terminacy than linear mixtures. The vectorial notation s(t) = [s1(t), . . . , sn(t)]T ,
also applied for e, x, z and y.
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Fig. 1. The mixing-separating system for PNL mixtures.

Each source si(t), i = 1, . . . , n is assumed to be temporally correlated (col-
ored). It is modeled by a q-order Markov model, i.e. :

psi
(si(t)|si(t− 1), · · · , si(1)) = psi

(si(t)|si(t− 1), · · · , si(t− q)) (1)

where psi
denotes the pdf of the random variable si.

2.2 Independence criteria

Since output independence leads to source separation, a possible approach for
separating source is to consider a criterion measuring the independence of the
output y. Following [8, 2], one can use the conditional mutual information of y,
denoted by I :

I =

∫
py(y(t)|y(t−1), · · · ,y(t−q)) log

py(y(t)|y(t − 1), · · · ,y(t − q))∏n
i=1 pyi

(yi(t)|yi(t− 1), · · · , yi(t− q))
dy

(2)
which is always nonnegative, and zero if and only if the variables wi(t) =
yi(t)|yi(t − 1), · · · , yi(t − q) are statistically independent for i = 1, · · · , n, i.e.

the signals yi(t), i = 1, · · · , n are independent Markovian process. Using the
expectation operator E[.], we can write:

I = E[log py(y(t)|y(t−1), · · · ,y(t−q))]−
n∑

i=1

E[log pyi
(yi(t)|yi(t− 1), · · · , yi(t− q))]

(3)

3 A is regular or full rank, with at least two non zero entries per row or per column,
and fi are invertible



Considering the separation structure (Fig. 1), where y(t) = Bz(t) and zi(t) =
gi(θi, xi(t)),

4 Eq. (3) becomes:

I = E[log px(x(t)|x(t − 1), · · · ,x(t− q))]

−E

[
log

∣∣∣∣∣

n∏

i=1

∂gi(θi, xi(t))

∂xi(t)

∣∣∣∣∣

]
− log | det(B)|

−

n∑

i=1

E[log pyi
(yi(t)|yi(t− 1), · · · , yi(t− q))] (4)

The first term being independent of B and Θ = [θ1, . . . , θn], the separation
structure can be estimated by minimizing:

J(B, Θ) = −
n∑

i=1

E

[
log

∣∣∣∣
∂gi(θi, xi(t))

∂xi(t)

∣∣∣∣

]
− log | det(B)|

−

n∑

i=1

E[log pyi
(yi(t)|yi(t− 1), · · · , yi(t− q))] (5)

In practice, under the ergodicity conditions, the mathematical expectation (5)

can be estimated by a time averaging, denoted Ĵ(B, Θ), which requires the
estimation of the conditional densities of the estimated sources. Asymptotically,
extending the results for linear mixtures of Markovian sources [2], the equivalence
of the mutual information minimization method with the Maximum Likelihood
method still holds for PNL mixtures of Markovian sources.

2.3 Estimating equation

Estimation of B and Θ can be done by minimizing J(B, Θ). Using a gradient
method, one obtain two sets of estimating equations, which are the gradients of
J(B, Θ) with respect to B and with respect to θi, i = 1 . . . n, i.e.:

∂J(B, Θ)

∂B
= −B−T + E

[
q∑

l=0

ψ(l)
y

(y(t)|y(t − 1), . . . ,y(t− q))zT (t− l)

]
(6)

∂J(B, Θ)

∂θi
= −E

[
∂2gi(θi, xi(t))

∂xi(t)∂θi

(
∂gi(θi, xi(t))

∂xi(t)

)
−1

]
+ (7)

E




n∑

j=1

bji

q∑

l=0

ψ(l)
yj

(yj(t)|yj(t− 1), . . . , yj(t− q))
∂gi(θi, xi(t− l))

∂θi





where we define q + 1 conditional score functions of a random variable w as

ψ
(l)
w (w0|w1, . . . , wq) = − ∂

∂wl
log pw(w0|w1, . . . , wq), l = 0, . . . , q, and we denote

4 gi(θi, xi(t)) is a parametric model of gi(.), where θi can represent a set of parameters



ψ
(l)
y (y(t)|y(t − 1), . . . ,y(t − q)) the n-th dimension vector whose i-th compo-

nent is ψ
(l)
yj (yj(t)|yj(t− 1), . . . , yj(t− q)). One can remark that the gradients of

the mutual information require first-order and second-order derivatives of the
nonlinear mappings gi’s.

3 Algorithm

In this section, we focus on two points for practically implementing the algo-
rithm. The first one concerns the estimation of conditional score functions. The
second one is a trick for computing a good initialization point of the algorithm,
which leads to enhanced speed of convergence. The algorithm is as follows :

1. initialization of the separating matrix B and the nonlinear parameters Θ
2. estimation of the conditional score functions
3. computation of the gradients (6) and (7)
4. updating of B and Θ according to a gradient descent
5. computation of the linearized observations zi and the estimated sources yi

6. normalization step

We iterate from 2 to 6 until convergence. The normalization step is required for
taking into account scale indeterminacies in B and in gi’s estimations.

3.1 Estimating the conditional score functions

For estimating the conditional score functions, we can firstly estimate the condi-
tional densities and compute then the conditional score functions by computing
the gradient of their logarithms. For a q-order Markovian source, the estimation
of the conditional densities may be done using the estimation of the joint pdf
of q + 1 successive samples of each source by a kernel method, which is very
time consuming and requires a lot of data. It must be also noticed that the
distribution of the data in (q + 1)-th dimensional space is sparse (curse of di-
mensionality) and not symmetric because of the temporal correlation between
the samples. Thus, one should either use non symmetrical kernels or apply a
pre-whitening transformation on data.

Recently, Pham [8] has proposed another algorithm for computing the con-
ditional score functions. The method starts with a pre-whitening stage for ob-
taining non correlated temporal data. Pham suggests also that the time pre-
whitening can allow to reduce the dimension of the used kernels because a great
part of the dependence between the variables is cancelled. The influence of the
pre-whitening on the estimation of the score functions is computed and will be
later compensated using an additive term. Afterwards, the joint entropies of
whitened data are estimated using a discrete Riemann sum and the third order
cardinal spline kernels. The conditional entropies, defined as

H(yi(t)|yi(t− 1), · · · , yi(t− q)) = −E[log pyi
(yi(t)|yi(t− 1), · · · , yi(t− q))] (8)



are computed by estimating the joint entropies:

H(yi(t)|yi(t− 1), · · · , yi(t− q)) = H(yi(t), yi(t− 1), · · · , yi(t− q))

−H(yi(t− 1), · · · , yi(t− q)) (9)

The estimator Ĥ(yi(t)|yi(t − 1), · · · , yi(t − q)) is a function of the observations
yi(1), · · · , yi(N), where N is the sample number. The l-th component of the
conditional score function in a sample point yi(n) is computed as:

ψ̂(l)
yi

(yi(t)|yi(t−1), · · · , yi(t−q))|t=n = N
∂Ĥ(yi(t)|yi(t− 1), · · · , yi(t− q))

∂yi(n− l + 1)
(10)

The method is very powerful and provides a quite good estimation of the con-
ditional score functions.

3.2 Initializing the nonlinear function

The convergence speed can been enhanced by choosing a relevant starting point,
especially for the parameters of the functions gi. As presented in [9, 10], the idea
is based on two remarks: (i) each mixture of sources, ei, is a random variable close
to Gaussian, and (ii) due to the nonlinear distortions, the random variable, xi =
fi(ei) is farther to the Gaussian than ei. Consequently, the nonlinear transform
ĝi = Φ−1 ◦ Fxi

, where Φ is the cumulative density function of the Gaussian and
Fxi

is the cumulative density function of xi, transforms xi to a Gaussian random
variable zi. If xi is exactly a Gaussian random variable, then ĝi = f−1

i ; if it is
approximately Gaussian, it is a rough estimation of f−1

i . Thus, we estimate the
initial parameter θi by minimization of the mean square error between ĝi and
gi(θi, .) Since the Gaussian assumption of xi is not completely fulfilled, we used
the above idea for computing a good starting point of the algorithm.

4 Experiments

The aim of this section is to check if a Markov model of the sources is able to
improve the performance of the algorithm. We will consider two kinds of colored
sources, modeled both by first order auto-regressive (AR) filters, whose input
is an iid random signal with either a Gaussian or a uniform distribution. We
restrict the study to post-nonlinear mixtures of 2 sources.

We compared two algorithms, the first one with 1-st order Markov model and
the second one with order 0, i.e. without modeling source temporal correlation.

Each experiment is repeated about 16 times, with random choice of the AR
coefficients, of the mixing matrix and of the nonlinear parameters :

– AR coefficients, ρi, i = 1, 2, are chosen so that 0.2 <| ρi |< 0.9 and
| ρ1 − ρ2 |> 0.2, since the source spectra must be different.



– The main diagonal entries aii of mixing matrix A are enforced to 1, while
the other are chosen in the range 0.2 <| aij |< 1. This choice allows to avoid
mixing matrices close to diagonal matrices, which provide post-nonlinear ob-
servations xi which would be still independent.

– Each nonlinear function fi, i = 1, 2, defined by the relation (11) (see below)
with parameter βi, is chosen so that 0.1 < βi < 5.

4.1 Simple nonlinear functions

In this first set of experiments, we use three nonlinear invertible functions, fi,
depending on one parameter β, and their inverses, gi, too. Since we can compute
the theoretical parameter of gi, this experiment allows to measure the parametric
error in the estimation of the nonlinear function.

Example 1. The main advantage of this nonlinear function is to have a very
simple inverse, expression of which is linear with respect to the parameter θ:

f(β, e) =
sign(e)

2β
(−1 +

√
1 + 4β|e|) ⇒ g(θ, x) = x+ θx|x| (11)

Examples 2 and 3. We can defined two others saturating non linear functions :

f(β, e) = sign(e) × (tanh(|e|))(1/β) ⇒ g(θ, x) = sign(x) × tanh−1(|x|θ)(12)

f(β, e) =
βe

β + |e|
⇒ g(θ, x) =

θx

θ − |x|
(13)

The concavity of the function (12) can be varied with the parameter, but,
contrary to the function (13) the magnitude of the saturation is not adjustable.

The figure 2 shows the shapes of the three functions defined by (11),(12) and
(13) for three values of β: 0.1 in solid line, 1 in dashed line and 5 in dotted line.
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Fig. 2. Examples of simple nonlinear mappings. Left: non-linearity (11); middle:
non-linearity (12); right: non-linearity (13).

Eq. (7) depends on the parametric models gi(θi, x). In the experiments, we
will use either specific models or polynomials. However, the derivatives with
respect to parameters θi are evident and will not be given in this paper.



4.2 Polynomial approximation of inverse function

We also used a more general and more flexible model for estimating the nonlinear
functions gi(θi, .), based on a polynomial expression of gi(θi, x) =

∑P
m=0 θimx

m.
This expression being linear with respect to the parameter θik, the gradient (7)
becomes :

∂J(B, Θ)

∂θik
= −E

[
kxi(t)

k−1

∑P
m=0mθimxi(t)m−1

]
+ (14)

E




n∑

j=1

bji

q∑

l=0

ψ(l)
yj

(yj(t)|yj(t− 1), . . . , yj(t− q))xi(t− l)k





The polynomial model is well suited to the inversion of saturating nonlin-
ear transformation. For more general mappings, we could extend the model by
adding rational powers in the polynomial.

4.3 Results

The following tables give the mean residual cross-talk, as well as max and min
between brackets, expressed in dB for 16 random configurations. Since si and yi

are unit power signals, the residual cross-talk is E[(yi − si)
2].

With simple functions. We compare two algorithms based on minimization of
the mutual information (MIM):

– the PNL algorithm developed in this paper, denoted MIM Markov 1, for
q = 1 (order 1, Markov source),

– the PNL algorithm, denoted MIM iid, which does not take into account the
source time structure (in fact, it correspond to MIM Markov 0, and is a
special case of the algorithm developed in this paper).

Sources MIM Markov 1 MIM iid
AR Gaussian (-20.7) -16.2 (-14.1) (-18.4) -8.9 (-5.0)
AR uniform (-23.1) -16.1 (-13.6) (-23.7) -14.5 (-12.3)

We remark that the Markov model of the source improves the performance:
about 7 dB, on the average for Gaussian input, and 1.6 dB for uniform input.
The improvement is then very sensitive, but much less important than for linear
mixtures [2] (−34.5 dB for Markov model, and −24.2 dB for iid algorithm for
uniformly distributed innovation process). This is mainly due to the nonlinear
part of PNL: a small error in the nonlinear parameter estimation can imply
a poor estimation of the separating matrix B. We also remark that, like in
linear mixtures, time correlation modeling (here with Markov models) allows to
separate Gaussian sources.



With polynomials. The functions gi’s are now modeled by 7-degree polynomials.
We again compare the two algorithms, MIM Markov 1 and MIM iid, according
to the notations of the previous paragraph.

Sources MIM Markov 1 MIM iid
AR Gaussian (-16.7) -14.0 (-11.8) (-12.2) -7.8 (-5.1)
AR uniform (-17.0) -14.3 (-11.9) (-15.3) -11.1 (-5.4)

5 Conclusions

In this paper, we presented an algorithm modeling the temporal relation between
successive source samples with a Markovian model, in post nonlinear mixtures.
For various parametric model of the nonlinear mappings gi’s, Markov model of
the sources provides a performance improvement for separating first order auto-
regressive sources. The computing time increases as 3q+1, where q is the Markov
model order: it is mainly due to the estimation of conditional score functions.
Further works include (i) the comparaison of our algorithm with TDSEP [7] (us-
ing second order statistics) (ii) the relevance of suitability between the Markov
order, q, and AR source order.
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