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ABSTRACT

A quasi-maximum likelihood approach is used for separat-
ing the instantaneous mixtures of temporally correlated, in-
dependent sources without either any preliminary transfor-
mation or a priori assumption about the probability distri-
bution of the sources. A first order Markov model is used to
represent the joint probability density of successive samples
of each source. The joint probability density functions are
estimated from the observations using a kernel method.

1. INTRODUCTION

In this work, The Maximum Likelihood approach (ML) is
used for blind separation of instantaneous mixtures of inde-
pendent sources. In a general framework (without noise and
with same number of sensors and sources), this problem can
be formulated as follows. Having

�
samples of an instanta-

neous mixture of � sources, �����	��

�������	� , where �����	��
����� ���	��� ��� ���	��������� � �"! ���	�$#�% and �����	�&
 ��'(� ���	��� '�� ���	�)�������	�'�! ���	�$#�% are respectively the vectors of the observations and
of the sources and � is an invertible matrix, one wants to
find an estimation of the matrix � (or its inverse, the sepa-
ration matrix) up to a scale factor and a permutation.

One of the approaches which can be used consists in
maximizing the likelihoodfunction of the observations (con-
ditioned on the matrix � ). This approach has the advan-
tage of providing an estimator asymptotically efficient (min-
imum variance among non biased estimators). For the i.i.d.
sources, this approach has been used by Pham and Garat
[1]. They show that the separation matrix can be estimated
by solving the system of equations * ��'�+-, � '/. �0#1
32 where'�+

represents the 4 -th source and
, � '	. � is the score function

of the 5 -th source. In the same paper, the authors propose
another method, for temporally correlated sources which
consists in computing the Discrete Fourier Transform of the6
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sources and in applying the ML approach on the results. In
[2], the authors use also the ML method but they model the
probability densities of the sources by a 4-th order Gram-
Charlier development. Finally, in [3], the ML method is
used for separating the Gaussian sources where the correla-
tion of each source is modeled by an autoregressive model.

In this work, we study the problem in the case of tem-
porally correlated sources and our objective is to maximize
directly the likelihood function without either any prelimi-
nary transformation or a priori assumption concerning the
probability density of the sources. In fact, these densities
will be estimated during the maximization procedure with a
kernel approach.

The remaining of the paper is organized as follows. In
section 2, after the problem statement, we derive the likeli-
hood function to be maximized, we present the method used
to estimate the probability density functions from the esti-
mation of the sources, and we propose an iterative algorithm
for maximizing the derived likelihood function. In section
3, our first simulation results will be presented. Finally, in
section 4, we conclude and present some perspectives.

2. METHOD

2.1. Problem statement

Having
�

samples of a vector � of dimension � , resulted
than a linear transformation �7
8�9� where � is a vector of
independent elements and eventually correlated in the time
(the sources), and A is a �;:<� invertible matrix, our ob-
jective is to find a matrix = so that the components of the
vector >3
;=?� are as independent as possible (indepen-
dence is obtained for =@
A�CB �

).

The ML method consists in maximizing the joint prob-
ability density of all the samples of all the elements of the



vector � (all the observations) with respect to = :D � � � �FE���������� � � ! �/E��)�������	������� � � � � �)�������	� � ! � � �/� (1)

Considering independence of the sources, this function is
equal to:

� EG HJI ���$= B � � G �LK
!M+ON � DQPSR �OT % + =?���FE����FT % + =?���$U��)������� �FT % + =V��� � �F�

(2)
where

DQPSR �/W�� represents the joint density of
�

samples of
the source

' +
and T + is the column 4 of the identity matrix.

Each term of
D(P R �/W�� can be written as the product of the con-

ditional densities. Even if the approach can be used in the
general case, for simplifying its realization, we suppose forD P R �FW � a first order Markov model, i.e.:DQPSR � ' + ���	� G ' + �/E��)�������	� ' + ���YXZE��/�[
 DQPSR � ' + ���	� G ' + ���YXZE��F� (3)

Equation (2) is reduced thus to:

� EG HJI ���\= B � � G �-K
!M+ON � � DQP R �OT % + =?���FE��/� KM] N � DQPSR �OT % + =V�����	� GT % + =?�����YXAE��F�$# (4)

Taking the logarithm of (4), one obtains the log-likelihood
function which must be maximized to estimate the separa-
tion matrix = . The probability densities of the sources be-
ing unknown a priori, they must be estimated from the ob-
servations. Although one can choose to estimate directly the
conditional densities, we preferred to proceed by estimating
the joint densities. For this purpose, after computing the
logarithm of (4), using the Bayes formula, we replace the
conditional densities by the joint densities divided by the
marginal densities. Thus, the log-likelihood function is :^ 
 �`_\a)b � G HJI ���\=c� G ��d !e +�N � � _\a)b � D P R �OT % + =?���FE��/�F�fd Ke ] N �_\a)b � D P R$g P R �OTh%+ =V�����	���FTh%+ =?�i���&XjE��F�D P R �OTh%+ =?�����YXAE��F� �0# (5)

And after the simplification, the function to be maximized
becomes:^ 
 �`_\a)b � G HJI ���\=c� G ��d !e +ON � � Ke ] N � _\a)b � DQP R g P R �kT % + =V�����	���

T % + =?�����YXAE��F�/�lX K B �e ] N � _\a)b � DQPSR �OT % + =V�����	�/�F�$# (6)

Computing the derivative of (6) with respect to = , it can
be shown that the matrix = is the solution of the following

system of equations1:Ke ] N � ��,im �/n+ g + �OT % + =?�����	���FT % + =V������XZE��F�-T %. =?�����	��d, m �	n+ g + �kT % + =V�����	�)�/T % + =V������XZE��/�LT %. =V�����&XAE��0#"XK B �e ] N � ��,l+ �OT % + =V�����	�F�-T %. =?�����	�$#o
p2 4�q
r5s
tE�������� �	� (7)

where
��, m �/n+ g + � , m �	n+ g + #�%<
puwv�x�y DQPSR g P R � � � z�� and

, + � � �Y
{J| } ~J��� R m�� n{ � . In these last expressions,
D P ROg P R � � � z�� represents

the joint density of two successive samples of the source')+
, and

D P R � � � is the marginal density of the same source.
The above system of equations may be solved using, for ex-
ample, the Newton-Raphson adaptive algorithm. However,
in this paper, we preferred to maximize directly the log-
likelihood function (6) using a gradient ascent algorithm.

2.2. Estimation of the probability densities

In the above relations, the probabilitydensities of the sources
are supposed to be known, which is never the case in prac-
tice. We thus replace these densities by the densities of the
separated signals >�
;=V� . Evidently, at convergence, if=�
��`B �

, these densities coincide with the densities of
the sources. In order to estimate these densities, we used
the kernel method. For estimating the joint densities, since
the successive samples of each source are correlated, the
Fukunaga formula [4] with Gaussian kernels was used. This
method has the advantage of adapting to the non symmetri-
cal data, by using only one smoothing parameter. The joint
density of two successive samples of 5 -th component of the
vector > is thus estimated by:�D �\z . ���	��� z . ���&XAE��/�&
 � HJI �/� . �SB �/� �� � XAE��F� � Ke +ON � EUh�I��h� � X?E� � � z . ���	�lX�z . �\4$��� z . ����XjE��lX�z . �$4�XAE��0# %� B �. � z . ���	�lX�z . �\4$��� z . ����XjE��lX�z . �$4�XAE��0#k� (8)

In this formula, � represents the covariance matrix of two
successive samples of z + , and � is the smoothing parameter
determining the width of each Gaussian kernel whose opti-
mal value is: ���k� ] 
p2"W������ � XAE�� B �/� �

.

For estimating the marginal densities one can proceed
to integrate the joint densities. We preferred however to

1There are �c���Z���	� equations. The � other equations necessary to
estimate the �s� entries of the matrix � , are only used to remove the inde-
terminacy due to scale factor, and can be chosen nearly arbitrary, according
to the normalization method which is used.



estimate them separately, and using following formula:�D �\z . ���	�/��
 E� � Ke +ON � E� Uh� I��h� � X?EU�� � �$z . ���	�lX�z . �$4\�F� � � (9)

the optimal value of � in this last formula is: � �k� ] 
@EhW�2����� B �/� �
where � represents the standard variation of z . .

2.3. Algorithm

Estimation of the matrix = is done using a batch type iter-
ative approach. At each step of iteration, using the current
value of the matrix = , the joint and marginal densities of
the separated signals are estimated using (8) and (9) and re-
placed in the log-likelihood function. Afterwards, the ma-
trix = is updated for maximizing this function using a gra-
dient ascent algorithm:=@
p=Ad �fu ¡ ^

(10)

The experience shows that the estimation of the densities
from the samples is highly sensitive to the normalization
of the data. Therefore, all the traditional methods for can-
celling the indeterminacies are not equivalent. For example,
if one constrain the matrix of separation = to have 1s on
its principal diagonal, the vector > may take the aberrant
values at the beginning of optimization, thus involving an
aberrant estimate of the densities which can lead to the di-
vergence. On the other hand, if one normalizes the rows of
the matrix = at the beginning of each iteration, this prob-
lem does not arise any more because the vector > and con-
sequently the estimates of density always take reasonable
values. With this remark, and to remove the scale indeter-
minacy, we normalize the rows of = to one at the beginning
of each iteration.

3. SIMULATION RESULTS

In this section, we present preliminary simulation results.
Although these experiences are not sufficient for a definitive
conclusion, they can confirm the relevance of the proposed
method.

In the first experience, we suppose that the true sources
are available and the density functions are directly estimated
from the sources. In other words, we replace z . �\4$� by

' . �$4\� ,
in the relations (8) and (9) for estimating the densities.

Our experience consists in separating a mixture of two
independent sources, each one representing a first order au-
toregressive sequence. One of the sources is Gaussian and
the other uniform. The experiences were done for different
sample numbers (

�
) and different correlation coefficients

of each source ( ¢ � and ¢ � ). For each chosen combination,
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Fig. 1. (a) mean and (b) standard deviation of the residual
cross-talk (in dB) for the Gaussian source (solid lines) and
the uniform source (dashed lines) with respect to the num-
ber of samples (

�
) when the sources are supposed known

.
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Fig. 2. (a) mean and (b) standard deviation of the residual
cross-talk (in dB) for the Gaussian source (solid lines) and
the uniform source (dashed lines) with respect to the corre-
lation coefficient ( ¢ ) when the sources are supposed known.



10 experiences, corresponding to 10 different noise seed
values, are done and the mean and the standard deviation
are reported. In all the experiences, the mixture matrix is:

�

¤£ � U�¥hU X � Uh¥�U� U�¥hU � UQ¥�U§¦
We compute the performance of the algorithm using the
residual cross-talk (in dB) on the two channels:¨ + 
8E�2 _\a)b �/© * � �\z + X ')+ � � #ª4�
8E�� U (11)

where z + and
')+

have unit variance. The mean and the stan-
dard deviation of these criteria are shown in Figures 1 and
2 with respect to

�
and ¢ � 
«¢ � . One can remark that

the performance increases with the number of samples. The
cross-talks as little as -33dB for 50 samples and -40dB for
300 samples prove the good performance of the algorithm.
The dependence of the performance on the correlation coef-
ficient is not significant. It is probably due to the small num-
ber of experiences. A Monte-carlo simulation seems neces-
sary to verify with certitude if the performance depends on
the correlation coefficient or not.

In the second experiment, we repeat a similar set of sim-
ulations supposing that the sources are unknown and the
densities are estimated from the observations in an itera-
tive manner as explained in the section 2.2. The result of a
sample run with

� 
ªE�2�2 and ¢ � 
@¢ � 

2"W�� is shown in
Figure 3. The mean and the standard deviation of the cross-
talks for the two sources are shown in Figure 4 with respect
to

�
. One can remark that the performance is not as good as

that obtained in the first experiment but it is still acceptable
for a sample size greater or equal to 200.

4. CONCLUSION AND PERSPECTIVES

In this paper, we used the maximum likelihood approach
for the blind separation of the instantaneous mixtures of the
temporally correlated sources without either any prelimi-
nary transformation or a priori assumption on the probabil-
ity densities of the sources. The Gaussian kernel estimators
are used to estimate the densities of the sources from the
observations using an iterative algorithm. The first results
confirm the relevance of the approach.

Several points could however be improved. Firstly, the
algorithm converges sometimes (although rarely) toward false
solutions. The experiment shows that the convergence de-
pends mainly on the distance between the restored signals
( =V� ) and the sources ( � ) at the beginning of the algorithm.
Convergence is almost always acquired if one replaces the
estimator of densities of =?� by an estimator of densities of
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Fig. 3. (a) et (b) Sources, (c) et (d) mixtures, (e) et (f) re-
stored signals, for

� 
«E�2h2 et ¢ � 
¬¢JU 
­2"W�� when the
sources are supposed unknown.
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Fig. 4. (a) mean and (b) standard deviation of the resid-
ual cross-talk (in dB) for the Gaussian source (solid lines)
and the uniform source (dashed lines) with respect to the
number of samples (

�
) when the sources are supposed un-

known.

sources (in other words, if one replaces > by � in the rela-
tions (8) and (9).

Secondly, the algorithm is rather slow because estimat-
ing the probability densities is time-consuming. We are cur-
rently working on less expensive, faster and more efficient
algorithms for estimating these densities.

Finally, the simple gradient algorithm used in this paper
is sensitive to the learning rate � . A conjugate gradient al-
gorithm, for example, can solve this problem.

The experiments presented in this paper had only the
objective to show the interest of the method. The number
of the experiences is not sufficient to derive the statistically
significant results. Many other tests seem necessary to ob-
tain a convincing conclusion. The comparison between our
method and the traditional methods can permit to check if
the modeling of correlation improves the performance or
not. One can also test the algorithm on the correlation gen-
erated by the non linear filters. We mention that in the prob-
lem formulation, any hypothesis about the nature of tempo-
ral filters is not made, expected a first order Markov model
for simplifying the realization. Finally, one can envisage
to test the algorithm with the real signals, like speech or
biomedical signals.
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